

Actividades divulgación Proyecto AGROALNEXT_2022

Lugar	XVII International Workshop on Sensors and Molecular Recognition
Localidad	Valencia
Provincia	Valencia
Fecha	20 y 21 de junio de 2024
Proyecto:	Tratamientos postcosecha. estrategia analítica para el control de la aplicación de fitosanitarios en planta y en fruta
Código proyecto	AGROALNEXT_2022/054
Grupo de investigación	UNIVERSITAT POLITÈCNICA DE VALÈNCIA ICIN

INFORME DE LA ACTIVIAD:

Se presentó una comunicación en formato póster en el XVII International Workshop on Sensors and Molecular Recognition, titulado "A 3d-printed hollow microneedle-based electrochemical sensing device for in situ plant health monitoring" como resultado de las investigaciones realizadas en el periodo comprendido entre junio de 2023 y junio de 2024.

El póster expone el desarrollo y aplicación de un biosensor con detección electroquímica basado en microagujas huecas impresas en 3D. Este biosensor monitoriza in situ la salud de las plantas, proporcionando información sobre diversos parámetros fisiológicos y bioquímicos. La tecnología propuesta destaca por su capacidad para realizar medidas directas y precisas, reduciendo la necesidad de técnicas invasivas y costosas. Durante la presentación, se discutieron los aspectos técnicos del diseño y fabricación del biosensor, así como los resultados preliminares obtenidos en pruebas de campo. Además, se abordaron las ventajas de esta aproximación para la agricultura de precisión y el potencial impacto en la gestión sostenible de cultivos. La recepción del póster fue positiva, generando interés y preguntas de los asistentes, lo que releva la aplicabilidad del trabajo presentado en el ámbito de la monitorización ambiental y la biotecnología agrícola.

FOTOS DE LA ACTIVIDAD:

Y para que conste a los efectos oportunos

Firma del IP1.

