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ARTICLE INFO ABSTRACT

Keywords: Poultry meat industry requires intelligent systems for achieving non-invasive real-time detection of bone frag-
Foreign bodies ments. Therefore, the main aim of this study was to assess the feasibility of using ultrasound imaging and
Chicken

multivariate image analysis to detect bone fragments in boneless and skinless chicken breast fillets. Bone frag-
ments of different sizes were inserted into the chicken and contact ultrasound images were acquired, following a
pre-established pattern, in the control (C) and out-control (OC, with bone) samples, by scanning the breast’s
surface, using contact ultrasound sensors (1 MHz) working in through transmission. Energy-magnitude and
energy-distribution ultrasound parameters were computed at pixel level in time (TDA) and frequency domain
(FDA). Principal Component Analysis (PCA) was used in TDA and FDA parameters, and its combination (TFDA).
From PCA model, the Residual Sum Squares (RSS) and Hotelling’s T-square (Tz) control statistics were used to
classify the C and OC images projected on the PCA latent structure. Experimental results demonstrated that the
presence of bone fragments within chicken breast fillets led to alterations in the energy-magnitude (avg.
amplitude decrease from 81.6 % to 52.6 %, depending on the bone size) and energy-distribution ultrasound
parameters (avg. variance decreased from 97.9 % to 70.6 % depending on the bone size). The RSS statistic
achieved the best classification performance (accuracy of TDA, FDA and TFDA>95 %) in C and OC images. These
results highlight the potential of combining contact ultrasound imaging with multivariate image analysis for the
reliable and rapid detection of bone fragments in chicken breasts.

In-line quality monitoring

Ultrasound imaging

Multivariate image analysis
Multivariate statistical process control

1. Introduction products (Yaqoob et al., 2021). These methods come with certain limi-

tations for food inspection, such as the high cost of equipment and

The poultry meat industry has undergone a rapid expansion in recent
years, and it is currently the most produced meat worldwide (Aggrey
et al., 2023; Fang et al., 2023). The consumption of poultry meat is
increasing, due to its affordability and high nutritional value (Jiang
et al., 2018). However, poultry meat production encounters several
challenges, related to the assurance of product quality and safety.
Moreover, another relevant concern is avoiding the presence of foreign
bodies in the final manufactured products. Foreign bodies represent a
physical risk in food safety, and in the poultry meat industry (Nielsen
et al., 2013), bone fragments (BF) are a persistent problem. Different
techniques, such magnetic detectors, X-rays, and hyperspectral sensors,
have been extensively used in the detection of foreign bodies within food
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maintenance, challenges associated with their integration into food
processing lines, and, in some cases, limited penetration capability to
thoroughly  analyze  the  internal structure  of  food
(Pérez-Santaescolastica et al., 2019).

Ultrasound has been employed as a valuable tool for the non-
destructive testing of food materials. Ultrasound offers advantages
over the aforementioned technologies: it enables faster inspection, it is
cost-efficient, versatile, easy to manipulate, safe for personnel, and
suitable for real-time in-line application (Farinas, Contreras, et al.,
2021). Consequently, the US has emerged as a promising technology for
detecting foreign bodies in foods. The conventional method for
analyzing food products and processes rely on the contact ultrasonics
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technology. In contact ultrasonics, sensors require close contact with the
food material to eliminate air gaps at the sensor-sample interface and
enhance energy transfer into the sample. This contact is achieved
through the use of coupling materials such as water, oil, or glycerine
(Sanchez-Jimenez et al., 2023) and/or by applying a slight static pres-
sure. In the meat sector, contact ultrasonics measurements have been
satisfactorily employed for monitoring the physicochemical modifica-
tions in beef steaks during the dry salting process (Farinas et al., 2023),
for on-line monitoring of the ham salting process (Garcia-Perez et al.,
2019) or for the characterization of dry-cured ham (Corona et al., 2013),
among other applications (Gao et al., 2024; Grassi et al., 2024; Sun et al.,
2023). Regarding the detection of BF in chicken breast, Correia et al.
(2008) designed and assembled an ultrasonic system based on contact
ultrasonics in pulse-echo mode. The effectiveness of their system showed
an acceptable detection of fragments ranging from 6 mm? to 16 mm?.
However, important limitations related with experimental variability,
leading to inconsistent and unreliable measurements.

An additional benefit of ultrasound lies in its capacity for spatial
analysis of food products by creating ultrasound images (USI). USI
serves as a valuable non-destructive tool for inspecting food by scanning
the surface of the product (Gan, 2020). It offers a spatial representation
of internal characteristics, facilitating the evaluation of physicochemical
attributes related to composition, texture or internal irregularities, such
as the foreign bodies presence. The massive volume of data generated by
using USI requires robust computing models to extract relevant infor-
mation. In this sense, pattern recognition techniques constitute an
advanced tool (Ozturk et al., 2023), and are classified into two cate-
gories: unsupervised techniques and supervised techniques (Jiménez-
Carvelo et al., 2019). The principal component analysis (PCA) is one of
the most unsupervised techniques used not only for exploratory analysis
purposes, but also is the basis for applying the multivariate image
analysis (MIA) procedure. MIA is mostly considered a valuable statistical
methodology for understanding the relationships and structures within
datasets (Duchesne et al., 2012). Furthermore, MIA-based Statistical
Process Control (SPC) can be applied for process monitoring and foreign
bodies detection based on an image (Prats-Montalban et al., 2011). The
integration of US and Pattern recognition supervised techniques has
been previously employed in various applications, including the moni-
toring of yogurt fermentation process (Bowler et al., 2023), tracking the
drying of potato slices (Sanchez-Jimenez et al., 2023), the detection of
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internal cracks in Manchego cheese (Conde et al., 2008), and has also
been used for assessing the coconut maturity (Caladcad et al., 2020).
However, the calibration of these models required the use of a latent
space (latent variables- LVs, from PCA) as an input of those techniques
(Jiménez-Carvelo et al., 2019), which means an additional calculation in
the setting of the optimal number of the LVs and the optimization of the
hyperparameters belonging to each supervised technique, to achieve the
model’s goal. Therefore, using PCA as an analytical tool can circumvent
the abovementioned issues. There is a notable gap in the existing liter-
ature regarding the integration of MIA-based SPC and USI for aiding in
the detection of foreign bodies in food products. In particular, the
integration of MIA and USI for the detection of BFs in poultry meat has
not been previously addressed. Therefore, this work aims to investigate
the feasibility of utilizing contact USI and MIA parameters for the
detection of varying-sized BF in chicken breast.

2. Materials and methods
2.1. Chicken breast samples

Skinless and boneless chicken breast samples were purchased from a
local grocery store in Valencia (Spain) and kept in refrigeration at 4 °C
until use (Fig. 1A). The fresh breasts were then cut into 5 x 5 cm fillet
samples with a thickness of about 1.5 cm (Fig. 1B). Fresh fillet samples
with no BF were considered as the control samples.

2.2. Bone fragments

A BF set extracted from different parts of the chicken skeleton was
used. For this purpose, a whole chicken was purchased, boiled for 20
min at 80 °C, and then manually deboned, in order to only extract BF.
The remaining boiled chicken was discarded, as the analyses were
conducted exclusively on fresh chicken samples, as described in section
2.1.

The BF used in the experiments (Fig. 1E) consisted of a bone obtained
from dorsal vertebrae with dimensions of 2.0 x 1.5 cm (Fig. 1Ei), a
fragment taken from the chest bone of 2.0 x 1.0 cm (Fig. 1Eii), and three
different fragments extracted from the chicken rib with sizes of 1.5 x
0.3 cm (Fig. 1Eiii), 1.0 x 0.3 cm (Fig. 1Eiv) and 0.5 x 0.3 cm (Fig. 1Ev).
Dimensions make reference to maximum height and width of BF.

Out-of-control (OC)

=Top-left
=Top-right
=Center
Bottom-left
®Bottom-right

(ii) 2.0 x 1.0 cm

l ©) ;

(iv) 1.0 x 0.3 cm
/gz
"

OC images

(H)

Fig. 1. Flowchart of the main steps to prepare control and OC (out-of-control) samples. A, B, C and D for control images, and C, B, E, F, G and H for OC images.
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2.3. Ultrasound experimental set-up

USI were acquired using the experimental set-up illustrated in Fig. 2.
The equipment consisted of a computer (Fig. 2A), an oscilloscope
(Fig. 2B, MDO3024, Tektronix, WA, USA), an ultrasonic pulser-receiver
(Fig. 2C, 5077 PR, Olympus, Houston, TX, USA), a pair of commercial
ultrasound transducers (Fig. 2D, A314S-SU model, Panametrics, Wal-
tham, MA, USA) of 1 MHz central frequency and 1 cm of diameter,
operating in through-transmission mode and a digital caliper (Fig. 2F,
192-633 Serie, Mitutoyo, Japan). A program was developed in Lab-
VIEW® 2018 (National Instruments, Austin, TX, USA) to record the ul-
trasonic signals from the oscilloscope.

2.4. Experimental procedure

Control samples fillets (without BF) were placed in polystyrene
plates (86.4 + 0.1 mm diameter, 14 + 0.1 mm thickness) (Fig. 1C) in
order to measure the ultrasound signals in the same locations for each
sample, thus obtaining the USL To achieve this, on the surface of
polystyrene plates, a pre-established pattern was previously drawn
consisting on a matrix of 25 points (5 x 5 cm) separated every 1 cm
(Fig. 1C). Each point of this matrix corresponded to a pixel of the image
(Fig. 1D). After ultrasonic measurements were performed, each type of
BF was inserted into the previously measured control samples, using a
laboratory forceps, trying to place it equidistant from each face of the
chicken breast sample. Each BF was placed in five different locations
(Fig. 1F), namely, the top-left, top-right, center, bottom-left and bottom-
right, corresponding to the position 7, 9, 13, 17 and 19 of the pre-
established matrices (Fig. 1G), respectively. Thus, OC ultrasound im-
ages (Fig. 1H) were obtained. USI was obtained for the different BF (n =
5, Fig. 1E) in triplicate (n = 3) placed in each location (n = 5, Fig. 1F).
Thus, a total of 75 chicken samples (5 x 5 x 3) were needed. Six
additional samples were measured to increase the number of observa-
tions; thus, 81 chicken breast samples (Fig. 1B) were analyzed.

In each measurement point (Fig. 1C), two types of ultrasound signals
(10 k points, average of 128 acquisitions) in the time-domain were ob-
tained. The first one was acquired with gain of —20 dB and used to
compute the energy-related ultrasound parameters in the time (section
2.5.1) and frequency (section 2.5.2) domains. Then, a second type of
ultrasound signal was acquired with a gain of 0 dB (Fig. 2C) to calculate
the ultrasound velocity (section 2.5.1). Thus, two types of 3D images of
5 x 5 cm (spatial dimensions-2D of scanned product’s surface) x 10 k
points (measured ultrasound signal at each point-1D) were acquired in

(F)
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every run. Moreover, the thickness of the samples was gathered for each
pixel using the digital caliper.

2.5. Feature extraction

Different parameters related to energy and also the ultrasonic ve-
locity was computed at pixel level, thus, each parameter summarized a
channel of the image. As an example, if six parameters were estimated
from a 3D image, a new image of 5 x 5 (spatial dimensions) x 6
(computed parameters) may be obtained.

2.5.1. Time domain analysis

Energy-magnitude ultrasound parameters such as peak-to-peak dis-
tance (PP, V), energy (ENG, Vv?) and integral of signals (INT, V ps)
(Bowler et al., 2023) and ultrasound velocity (Ve, m/s) were computed
in the time-domain. The INT was computed by using the trapezoidal
numerical method “trapz” of MATLAB® R2023a (The MathWorks Inc.,
Natick, MA, USA). The Variance (VAR;, V2), skewness (SKE;), kurtosis
(KURy) and entropy (ENT}) of ultrasound signals were also computed
using “var”, “skewness”, “kurtosis” and “entropy” MATLAB functions
(Caesarendra & Tjahjowidodo, 2017).

PP = max(X;)-max|min(X,) | @
ENG = ||X,|? 2
N
INT =) Xzt 3
i=1
N 2
> (%,%)
VAR, = TN @
N
= x| o)
SKE, = +=1 - (5)
Gt
N
= x| o)
KUR, = ~= . (6
Gt
N
ENT, = - p(X,)logp(Xy,) @]
i=1
O (A)
/
= —

Fig. 2. Ultrasound image acquisition device: Computer (A), oscilloscope (B), generator-receiver (C), ultrasonic transducers (D), food sample (E) and digital

caliper (F).
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Where X; is the ultrasound signal in the time-domain, Xz; corre-
sponded with the positive values of X;, X ¢ is the mean of each ultra-
sound signal in the time-domain, N is the number of elements of each X,
t is the vector which registered the ultrasound signal’s traveling time
(ps), o the standard deviation of each ultrasound signal in time-domain
and p(Xy) is the probability of the occurrence of the i-th amplitude value
in the discretized time-domain ultrasound signal. To assess the V. (Eq.
8), the time of flight (TOF, ps) was firstly calculated by using Eq. 9
following the energy threshold method (ETM) described by Garcia-Perez
et al. (2019).

L
Vel = TOF (8)
(TOA —T;)
ae

TOF = 9

Where L (m) is the thickness in the measurement point; TOA, the
arrival time (points) of the ultrasonic signal; T;, the trigger location
(points) and ae (100 Mpoints/s) the acquisition speed.

2.5.2. Frequency domain analysis

The Fast Fourier Transform (FFT) was applied on the time-domain
ultrasound signals to obtain the ultrasound frequency spectrum (phs,
computed via “fft”, MATLAB function, Eq. 10). From phs, the following
energy related ultrasound parameters in the frequency domain were
computed. Zero-order moment (Mo, MHz, Eq. 11) corresponded with the
integral of the area under the curve of the phs (Garcia-Perez et al.,
2019). The first-order moment (M;, MHz) was calculated using Eq. 12,
while the ratio Mp/M; computes the center frequency (F;) of the phs (Eq.
13). Additionally, the maximum peak of the frequency spectrum (MP,
Eq. 14) was also considered. As in section 2.5.1, the spectral-variance
(VARgp, Eq. 15), spectral-skewness (SKEs,, Eq. 16), spectral-kurtosis
(KURgp, Eq. 17) and spectral-entropy (ENTsp,, Eq. 18) were also deter-
mined (Caesarendra & Tjahjowidodo, 2017).

phs = |[FFT| (10)
N=fgrr
M, = Y phs(f) Af a1
=1
N=fprr
M; = > phs(f) f'af 12)
f=1
— Ml
Fo=ip (13)
MP = max(phs) a4
N -
3" (phs;-phs)?
_i=1
VAR, = B (15)
N -
| (ohsphs) | /v 1)
SKE,, = = o (16)
N -
| ohsphe)* | /v )
KUR,, = =— ot a7
N
ENT,, = - _ p(phs;)log>p(phs;) as

i1

Where f is the vector of spectral frequencies (MHz), fppr is the
maximal frequency obtained by using the FFT, r represents the order of
the moment, phs is the mean of each phs, osp the standard deviation of
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each phs and p(phs;) is the probability of the occurrence of the i-th value
in the discretized phs.

2.5.3. Statistical analysis

In order to assess the influence of BF size/type and their location
within chicken breast fillets on the time and the frequency domain ul-
trasound parameters, a multifactor analysis of variance (ANOVA) was
considered. The mean pairwise comparisons were performed by using
Fisher’s Least Significant Difference (LSD) test with a 95 % confidence
interval. Further, an ANOVA test based on L values was also performed
to examine whether the inserted BFs affected the thickness of measured
samples.

2.6. Multivariate image analysis

In order to assess the feasibility of using the USI to detect BF, three
different approaches were proposed i) time-domain (TDA), frequency-
domain (FDA) and combined time-frequency domain (TFDA). TDA
approach used all the parameters computed in the time-domain (PP,
ENG, INT, V., VAR, SKE, KUR; and ENT}), while FDA used the ones in
the frequency-domain (Mo, F;, MP, VAR, SKEs,, KURg, and ENTjp).
Additionally, in order to determine the influence of the number of im-
ages used to detect the BF, four different datasets were used considering
100 %, 75 %, 50 % and 25 % of the experimental data (81 control and 81
OC images, equal to 162 images). In all data sets, the number of control
and OC images were the same. Thus, TDA using 50 % of experimental
data set consisted of 40 control and 40 OC images, both with dimensions
of i = 5 (number of points on the X axis) x j =5 (number of points on the
Y axis) x k = 8 (number of parameters computed in the time-domain). In
FDA and TFDA, k dimensions were 7 and 15 (8 + 7), respectively. To
improve the speed of analysis, each image was unfolded as a charac-
teristic vector (Achata et al., 2018). Thereby, each image was reshaped
asavector of i x j x k. As an example, one imagein TDA(i=5 xj=5 x
k = 8) was rearranged from a 3D-matrix to a 1D-row vector of dimension
200. In each approach and dataset, the MIA procedure was followed
according to reported by Colucci et al. (2019) and Verdu et al. (2025).
The PCA model was employed to extract the latent eigenspace of
unfolded control images (without BF). For this purpose, control data sets
were randomly split into a segment of 90 % of experimental data for
model calibration (Cc,)). The remaining samples, not included in model
training, comprised 10 % of the control data (8 samples) and all OC
images (81), which were reserved for external validation. This valida-
tion aimed to assess the feasibility of the calibrated PCA model in
detecting BF (Reis, 2015). External validation is the gold standard in
both supervised and unsupervised data analytics, ensuring generaliz-
ability and enhancing confidence in the results (Palacio-Nino & Berzal,
2019). Therefore, for industrial implementation, a larger validation set
is recommended to ensure the reliable detection of food contaminants
(McGrath et al., 2018; Ten-Doménech et al., 2023).

Firstly, the segment of data for PCA calibration was mean-centered
and scaled to have unit variance. The PCA model used the Singular
Value Decomposition (SVD) algorithm to extract the orthogonal latent
eigenspace by compressing the image information into a LVs. During the
scaling process, both the mean and standard deviation vectors obtained
from scaling process were saved as PCA control coordinates. Further-
more, the external validation dataset was scaled using the control co-
ordinates and then projected onto the latent space by using the loadings
from the control model. The residual sum of squares (RSS) and the
Hotelling’s T-squared (T® multivariate control statistics were
computed. The control limit (CL) of both RSS and T2 were calculated
from the values of control images by percentile method considering 90
%, 95 %, 97.5 % and 99 %. Additionally, a limit augmentation (LA) of O
%, 50 %, 75 % and 100 % was used to increase the decision boundary of
computed control limits (Sinisterra-Solis et al., 2024) for exploring its
influence in the classification of control and OC images.
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2.7. Classification performance and statistical validation

The capability of PCA in the detection of BFs was assessed from 1 LV
to the maximal number of LVs in each approach and dataset. Both
multivariate control statistics (RSS and T%) served as the basis to
quantify the classification performance of the models by the confusion
matrix (CFM, Eq. 19). In this way, the sum of control images from
calibration and internal validation dataset with values of RSS and T into
the LA-CL indicated true negatives (TN) and if they exceeded the LA-CL,
indicated false positives (FP). Regarding the OC images, true positives
(TP) involved the OC images which exceeded the LA-CL and were
correctly detected. OC images that do not exceed the LA-CL were
considered as false negatives (FN). The goodness of classification of each
multivariate statistic was assessed by computing figures of merits such
as the overall accuracy (A, Eq. 20), sensibility (Se, Eq. 21) and speci-
ficity (Sp, Eq. 22) (Craig et al., 2018).

Real
oc ucC
CFM = Predicted 19
redcte loc TP FP a9
UC FN TN
TP + TN
) — %
Ael®) = T IN T T N 00 20
TP
Se =Tp 1 EN @
TN
_ 22
S TN + FP 22)

In order to optimize the PCA model based on RSS and T2, a multi-
objective optimization problem was formulated. The objective func-
tion aimed to determine the number of LVs (optimal number of principal
components, OPCs) of the PCA model maximizing both the S. and S,
simultaneously. Thus, the surface response methodology (SRM) and
desirability function (D.) were employed (Kumar et al., 2019; Yolmeh &
Jafari, 2017). The optimization processes were carried out using the
“fmincon” MATLAB function. All calculations were repeated 100 times
to estimate the influence of considering different random partitions of
the control matrices to calibrate the PCA model and its influence on the
detection of BF. For the selection of the number of LVs of the optimized
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PCA model in each approach, maximizing the classification perfor-
mance, a multifactor ANOVA considering the random data partition (as
block factor), the CL and their LA and the goodness of classification
metrics as responses (Acc, Se, and S,) was carried out. All multifactor
ANOVA (sections 2.6 and 2.8) were subjected to residual validation
(Marques et al., 2020) using different tests on the residuals to assess
normality (Shapiro-Wilk’s test and q-q plot), independence (Ljung-Box’s
test), and homoscedasticity (multiple linear regression-MLR on square
residuals). Hypothesis tests and fulfillment of statistical assumptions
were assessed at a confidence level of 95 %. The statistical analysis was
conducted using STATGRAPHICS Centurion XVIII (Manugistics, Inc.,
Rockville, MD, USA).

3. Results and discussion

3.1. Influence of BF on the ultrasound signals in time and frequency
domains

Figs. 3A-3B and 4A-4B-4C show time-domain US signals from the
center point (point 13, Fig. 1G) and control (3C) and OC USI (3D-3E, 4D-
4E-4F) of chicken breast fillets wherein the different BFs were inserted.
Meanwhile, Fig. 5 depicts the phs of control and OC signals also obtained
from the center point. A consistent trend was observed in all cases: the
BF presence disturbed the time-domain control ultrasound signals and
the control frequency-domain spectra. In the case of time-domain, BF of
2.0 x 1.5 cm (Fig. 3A) and 2.0 x 1.0 cm (Fig. 3B) promoted an important
decrease in signal amplitude. Moreover, the BF presence led to a pro-
nounced reduction in the maximum peak of the phs (for 2.0 x 1.5 cm,
Fig. 5A, and 2.0 x 1.0 cm, Fig. 5B). For BF of 1.5 x 0.3 cm (Fig. 4A-5C),
1.0 x 0.3 cm (Fig. 4B-5D), and 0.5 x 0.3 cm (Fig. 4C-5E), the influence
of the BFs led to less pronounced drops in the maximum amplitude of
time and frequency-domain signals compared to the samples containing
larger size foreign bodies sizes (Correia et al., 2008). Additionally,
control USI (Fig. 3C) and all the pixels OC images (control pixels), except
point 13, evidenced PP values between 2.8 and 4 V (color bar from or-
ange to yellow), meanwhile for pixels of point 13 in OC images (Fig. 3D-
3E and Fig. 4C-4D-4E), PP values ranged between 2 (red) to 0.5 (dark
red).

Ultrasound waves are partially scattered, reflected, and transmitted
when they are passing through materials with different acoustic im-
pedances (defined as the product of density and velocity), which results
in energy attenuation. The attenuation level will be dependent on the
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Fig. 3. Ultrasound signals and example of PP (peak-to-peak) images in chicken breast fillets with bone fragments of size 2.0 x 1.5 cm (A, D) and size of 2.0 x 1.0 cm

(B, E) placed on its center and control image (C).
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Fig. 5. Example of the frequency spectrum of chicken breast samples with and without bone fragments. Bone fragments of size 2.0 x 1.5 cm (A), size of 2.0 x 1.0 cm

(B), size 1.5 x 0.3 cm (C), size of 1.0 x 0.3 cm (D) and size of 0.5 x 0.3 cm (E).

impedance mismatch in the food-foreign bodies interface and the
foreign bodies size (Cho & Irudayaraj, 2003). Foreign bodies with gas-
filled structures are likely to cause greater energy attenuation due to
the significant acoustic impedance mismatch between the gas and the
surrounding material (Farinas, Sanchez-Torres, et al., 2021). Foreign
bodies may also cause wave velocity modifications, which will be
dependent on the ratios of velocity and thickness between the foreign
bodies and the food material (Farinas et al., 2023).

In order to statistically analyze the abovementioned attenuation ef-
fects of BFs within chicken breast samples, a multifactor ANOVA
examining the influence of BF size and their location inside the samples,
on the energy-related ultrasound parameters computed in the time-

frequency domain and ultrasound velocity (section 2.5), was carried
out (Tables 1 to 4). Further, the results of the multifactor ANOVA
assessed on the L are also shown in Table 1. A statistically significant (p
< 0.05) effect of the BF size was found on the time and frequency
domain ultrasound parameters (Tables 1 to 4). Conversely, the location
of the BF did not significantly (p > 0.05) affect the ultrasonic parame-
ters, which shows the robustness of the technique to measure the pres-
ence of bones of different sizes, regardless of their location. Moreover,
the non-statistically significant (p > 0.05) effect of BF size or location
was found on L (Table 1), which demonstrates that the incorporation of
BFs of varying sizes, in different locations, had no impact on the final
thickness of the sample, which could have altered the ultrasonic



G.A. Collazos-Escobar et al.

Table 1

Ultrasound parameters computed in the time-domain (energy-magnitude
related and velocity) and thickness for each bone size and location within the
sample. Multifactor ANOVA homogeneous groups.
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Table 2

Ultrasound parameters computed in the time-domain (energy-distribution) for
each bone size and location within the sample. Multifactor ANOVA homoge-
neous groups.

Position: center (point 13 of the matrix)

Position: center (point 13 of the matrix)

Type PP (V) ENG (VZ) INT (V ps) Ve (m/s) L (m) Type VAR, (Vz) SKE, KUR, ENT,
Control 3.8+ 4245 + 204.9 + 1547.8 + 0.014 + Control 0.34+6x107%% 011 +9x 8.92 + 33+
0.1%4 3.9% 3.5 11.6*4 0.002%4 10734 0.06* 0.1%4
20x15 0.7+ 115 + 31.0 + 1433.8 + 0.016 + 2.0x 1.5 7x10%+1 x 0.10 + 7 x 8.03 + 21+
cm 0.1 2.3 2.8PA 13.0" 0.001%A cm 107304 107304 0.07°* 0.1
20x1.0 08+ 6.9 + 30.6 + 1444.9 + 0.016 + 2.0 x 1.0 8x103+1 x 0.11 + 8 x 812 & 21+
cm 0.1%4 2.8 1.9% 13.2A 0.00224 cm 107304 107304 0.06 0.1°
1.5x03 11+ 60.8 + 66.7 + 1551.2 + 0.015 + 1.5 x 0.3 0.04+£6 x 10°*  _0.03 +8 x 8.21 + 2.4+
cm 0.2¢A 2.4 3.6 7.234 0.001% cm 1073¢A 0.07%4 0.1¢A
1.0x03 15+ 59.7 + 84.4 + 1552.6 + 0.016 + 1.0 x 0.3 0.07 +3 x 103" _0.03+ 8 x 8.30 + 26+
cm 0.19A 1.8°A 3.84A 9.1% 0.001%A cm 10734 0.07% 0.244
05x03 18+ 123.2 + 110.1 + 1545.9 + 0.015 + 0.5 x 0.3 0.10+6 x 10°*A  _0.06 + 6 x 8.52 + 27 +
cm 0.24 2,244 2.3 11.1%4 0.002%4 cm 107344 0.07%4 0.1¢A
Position: top-left (point 7 of the matrix) Position: top-left (point 7 of the matrix)
38+ 4259 + 202.9 + 1555.2 + 0.015 + on —0.12£6 x 8.84 + 33+
Control 0.1%A 2.6% 1.9 11.3% 0.001% Control 0.34 +£ 8 x 10 10-32A 0.06° 0.1%
20x15 06+ 8.0 + 31.9 + 1444.2 + 0.016 + 2.0 x 1.5 7 %1073 £2x 0.10 + 8 x 8.06 + 21+
cm 0.1 3.8% 2.9PA 11.7° 0.001% cm 10730A 10730A 0.06°* 0.1%
20x1.0 07+ 9.6 + 31.0 + 14455 + 0.015 + 2.0 x 1.0 9x10°+1 x 0.10 + 7 x 8.06 + 21+
cm 0.1%4 0.5°* 2.1%4 17.0°A 0.0022* cm 107304 107304 0.06"* 0.1°
1.5x03 09+ 59.9 + 67.6 + 1548.4 + 0.014 + 1.5 x 0.3 00448 x10%A —003E5x 8.19 + 2.4+
cm 0.1 3.2¢A 7.1 12.0%4 0.002% cm : 1073¢A 0.05* 0.1¢A
1.0x03 15+ 58.9 + 84.4 + 1549.0 + 0.016 + 1.0 x 0.3 0.08 & 2 x 1034  ~0:03£6x 8.29 + 2.6 &
cm 0.247 3.7¢A 2.6 12.9%A 0.001%* cm ’ 1073 0.08% 0.194
05x03 18+ 120.5 + 112.5 + 1536.2 + 0.015 + 0.5 x 0.3 01047 x 10%A 007 +8x 8.55 + 27 +
cm 0.2¢4 3.494 3.0%4 11.1%4 0.002%4 cm ’ 107344 0.07°A 0.1%4
Position: bottom-left (point 17 of the matrix) Position: bottom-left (point 17 of the matrix)
3.8+ 4242 + 205.6 + 1546.1 + 0.017 + oan —0.11£6 % 8.87 + 32+
Control 0.23A 9.7 919 .59 0.002% Control 0.34 +£7 x 10 10-3A 0.05% 0.1%
20x15 06+ 11.3 + 31.1 + 1450.4 + 0.016 + 2.0 x 1.5 7x1073+1 x 0.10 + 7 x 8.08 + 21+
cm 0.2 1.3% 4.0 10.3" 0.001%* cm 10730A 10730A 0.06°* 0.1
20x1.0 07+ 10.9 + 30.3 + 1459.0 + 0.015 + 2.0 x 1.0 8x10°+1 x 0.10 + 6 x 8.05 + 21+
cm 0.1 1.5 2.8 9.5 0.002% cm 107304 107304 0.05°* 0.1
1.5x03 11+ 59.4 + 68.1 + 1534.2 + 0.014 + 1.5 x 0.3 00446 10%A  —004£7x 8.24 + 25+
cm 0.1 3.3 3.0 9.0% 0.002% cm : 1073¢A 0.07%4 0.1¢A
1.0x03 1.6+ 58.3 + 82.3 & 1538.1 + 0.016 + 1.0 x 0.3 0.08 & 3 x 1034  ~0-05£6x 8.33 + 26+
cm 0.197 4.1 2,544 13.5% 0.001%* cm ) 10734 0.06% 0.194
05x03 19+ 117.1 + 113.4 + 1549.9 + 0.015 + 0.5 x 0.3 01047 x 10%A 0076 x 8.56 + 27 +
cm 0.2¢4 2,204 2.2¢A 11.7%4 0.002%4 cm ’ 107344 0.06°A 0.1%4
Position: top-right (point 9 of the matrix) Position: top-right (point 9 of the matrix)
37 + 427.6 + 203.3 + 1551.6 + 0.014 + oon —0.11+8x 8.92 + 32+
Control 0.2%A 9.7 3.0 11.0% 0.001% Control 0.33 £5 x 10 10-32A 0.08% 0.1%
20x15 0.7+ 12,5 + 31.9 + 1446.5 + 0.016 + 2.0x15 7x107°+1 x 0.10 + 7 x 8.06 + 2.1+
cm 0.1°A 2.3 4207 7.0°A 0.001%* cm 10730A 10730A 0.07°* 0.1°
20x1.0 0.7+ 11.4 + 28.1 + 1456.4 + 0.016 + 2.0 x 1.0 8x10°+1 x 0.10 + 7 x 8.14 + 22+
cm 0.1%A 1.6" 4.7 7.6%A 0.001%4 cm 107304 107304 0.08°* 0.1
1.5x03 1.0+ 57.9 + 68.0 + 1543.4 + 0.016 + 1.5 x 0.3 00445 x 10%A —003E5x 8.23 + 2.4+
cm 0.1¢A 2.5 5.2¢A 8.6°* 0.001%* cm ) 1073¢A 0.07* 0.1¢A
1.0x03 15+ 59.6 + 85.3 + 1544.8 + 0.016 + 1.0 x 0.3 0,08+ 4 x 1034  ~0:03£5x 8.32 + 2.6 +
cm 0.194 4,04 3,19 10.5%4 0.001% cm ’ 10734 0.07%% 0.194
05x03 18+ 117.2 + 114.3 + 1547.1 + 0.016 + 0.5 x 0.3 01048 x 10%A —0:06£5x 8.54 + 27 +
cm 0.2¢4 1.99% 3.1 8.0% 0.001%4 cm : 107344 0.05%A 0.1%4
Position: bottom-right (point 19 of the matrix) Position: bottom-right (point 19 of the matrix)
3.7 + 429.2 + 202.3 + 1548.2 + 0.015 + oon —0.11+8x 8.91 + 32+
Control 0.9%A 9,99 5,19 g1 0.002% Control 0.34 £ 8 x 10 10-32A 0.05% 0.1%
20x15 06+ 115 + 29.8 + 1434.0 + 0.016 + 2.0x 15 7x10°+1 x 0.10 + 8 x 8.07 + 21+
cm 0.1°* 2.4 2.4A 10.6" 0.0022* cm 107304 107304 0.07°* 0.1%
20x1.0 07+ 115 + 30.2 + 1437.4 + 0.014 + 2.0 x 1.0 8x10 %41 x 0.11 £ 6 x 8.16 + 21+
cm 0.2 1.3% 2.6 11.0"* 0.002%4 cm 107304 107304 0.05°* 0.1
1.5x03 1.0+ 57.1 + 67.9 + 1540.1 + 0.016 + 1.5 x 0.3 0.04 44 x 10%A 0035 x 8.21 + 2.4+
cm 0.1¢A 3.4 4.6 11.3%A 0.001%* cm ’ 1073¢A 0.06°* 0.1¢A
1.0x03 15+ 57.8 + 86.4 + 1540.7 + 0.015 + 1.0 x 0.3 0,07 +3 x 1034 0036 x 8.33 + 25+
cm 0.294 2.8 4,694 12,174 0.002%4 cm ’ 10734 0.06% 0.194
05x03 19+ 123.3 + 114.6 + 1549.2 + 0.016 + 0.5 x 0.3 01047 x 1034 007 £5x 8.54 + 27 +
cm 0.1%4 2,39 2.6 8.0% 0.001%4 cm : 107344 0.06°A 0.1%4

PP (peak-to-peak), ENG (energy), INT (integral), V. (ultrasound velocity), and L
(thickness). Results are expressed as mean =+ standard error. Different lowercase
letters indicate statistically significant differences (95 %) for each ultrasound
parameter as a function of the size of bone fragments. Uppercase letters indicate
statistically significant differences (95 %) for the location of these bone pieces
within the chicken breast.

VAR, (variance in time-domain), SKE, (skewness in time-domain), KUR; (kur-
tosis in time-domain) and ENT, (entropy in time-domain). Results are expressed
as mean =+ standard error. Different lowercase letters indicate statistically sig-
nificant differences (95 %) for each ultrasound parameter as a function of the
size of bone fragments. Uppercase letters indicate statistically significant dif-
ferences (95 %) for the location of these bone pieces within the chicken breast.
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Table 3

Ultrasound parameters computed in the frequency-domain (energy-magnitude
related) for each bone size and location within the sample. Multifactor ANOVA
homogeneous groups.
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Table 4

Ultrasound parameters computed in the frequency-domain (energy-distribution)
for each bone size and location within the sample. Multifactor ANOVA homo-
geneous groups.

Position: center (point 13 of the matrix)

Position: center (point 13 of the matrix)

Type M, (MHz) F. MP Type VAR, SKEj, KUR, ENT,,
Control 2177.8 + 64.6* 1.00 + 0.01%* 296.2 + 16.9% Control 6782.2 + 68.2°  1.45+0.02*A  3.7+0.1*"  05+01*%"
2.0 x 1.5 cm 396.1 + 64.6"* 1.02 4+ 0.01° 42.7 + 3.7°A 20x15cm  160.4 + 428" 1.29 + 0.07°*  3.3+0.3°* 28+0.2"
2.0 x 1.0 cm 333.7 + 59.4"* 1.03 & 0.01°* 43.1 £ 5.7° 20x1.0cm  166.4 + 56.8°* 1.36 £ 0.05"*  3.2+01% 27+02°
1.5 x 0.3 cm 770.1 + 62.9* 1.03 + 0.02°4 89.8 + 6.7* 1.5x0.3cm  954.8 + 75.3% 1.35 + 0.17%4 35+ 01"  23+01%
1.0 x 0.3 cm 787.5 + 73.5% 1.02 + 0.01°4 98.0 + 6.6 1.0 x 0.3cm  1776.8 + 88.7%  1.35+0.06"A 3.3+0.2"A 23+01%
0.5 x 0.3 cm 827.7 + 62.4%* 1.03 + 0.01¢* 103.4 + 11.3%* 0.5x0.3cm 18847 +755%  1.31 £0.03*A 32+0.1°* 224014
Position: top-left (point 7 of the matrix) Position: top-left (point 7 of the matrix)

Control 2094.8 + 65.9°4 1.00 + 0.01%* 297.0 + 8.3 Control 6769.8 + 69.2°  1.45+0.03*  3.7+0.1*"  0.3+01*%"
2.0 x 1.5 cm 354.3 + 56.3"" 1.02 + 0.01° 41.4 + 55" 20x15cm  107.1 + 53.9"* 1.32 £ 0.21°A 3.4 +02""  29+0.1"
2.0 x 1.0 cm 383.0 + 67.7°* 1.02 + 0.00°* 46.7 +10.1° 20x1.0cm  120.6 + 426" 1.25 + 0.2°A 31+03 29102
1.5 x 0.3 cm 791.6 + 63.4 1.02 + 0.0154 89.1 + 7.5 1.5x0.3cm  955.3 + 76.24 1.38 + 0.09%* 3.5+ 03"  24+02%
1.0 x 0.3 cm 831.5 + 65.3% 1.03 + 0.01°4 89.4 + 10.6%* 1.0 x 0.3cm 17153 + 64.0%  1.32+0.15"* 33+ 0.4 24+01%
0.5 x 0.3 cm 862.9 + 71.2%* 1.03 £ 0.01¢* 94.5 + 14.5 05x0.3cm 18951 +77.7%  1.38+£0.03°* 35401 25+01%
Position: bottom-left (point 17 of the matrix) Position: bottom-left (point 17 of the matrix)

Control 2164.4 + 62.7° 1.01 + 0.01** 294.1 + 14.0% Control 6776.9 + 62.2°*  1.43+0.03"*  3.6+0.1* 0.4 +01%"
2.0 x 1.5 cm 393.6 + 49.2° 1.02 + 0.01% 35.5 + 8.4% 20x1.5cm  100.3 + 45.3% 1.35+0.11°%4 3.3+ 0.2  29+0.1"
2.0 x 1.0 cm 395.0 + 67.6"* 1.02 + 0.01°4 46.8 + 8.1° 20x1.0cm  129.1 + 471 1.36 £ 0.10°*  3.2+04% 28+01"
1.5 x 0.3 cm 805.2 + 68.6%* 1.03 + 0.01°4 87.2 + 14.0%A 1.5x0.3cm  898.9 + 69.24 1.42 + 0.02%4 33+01%  25+01%
1.0 x 0.3 cm 785.8 + 57.8 1.02 + 0.02°4 95.2 4+ 14.3%A 1.0 x 0.3cm  1726.4 £58.99%  1.37 £0.12°4 3.2+ 0.2"A 24+ 0.2%4
0.5 x 0.3 cm 851.9 + 61.2%4 1.03 + 0.00%* 103.7 + 11.3% 05x0.3cm 18862 +54.6%  1.38 £0.03°* 3.3+0.1°" 25+0.2%
Position: top-right (point 9 of the matrix) Position: top-right (point 9 of the matrix)

Control 2116.5 + 61.9°* 1.00 + 0.01** 295.7 + 8.1%* Control 6746.8 + 77.7**  1.45+0.03"  3.7+0.1*" 0.6+ 0.2
2.0 x 1.5 cm 376.6 + 54.8"* 1.02 + 0.01° 38.9 + 8.1 20x15cm  122.6 + 426" 1.30 + 0.12°* 3.2+ 0.2°4 3,0+0.2%
2.0 x 1.0 cm 379.8 + 49.2°* 1.03 + 0.02°4 47.0 + 8.4% 20x1.0cm 1387 + 56.8"* 1.25+0.12°% 31 +02°% 29+01"
1.5 x 0.3 cm 757.9 + 67.24 1.02 + 0.02°4 93.6 + 8.14 1.5x0.3cm  931.0 + 65.3% 1.36 + 0.09°* 32401  24+01%
1.0 x 0.3 cm 816.1 + 55.1°4 1.03 & 0.01°* 97.9 + 8.1%* 1.0x03cm 17123 +787%  1.32+003"" 32+02"" 25+01%
0.5 x 0.3 cm 835.1 + 60.7* 1.03 + 0.02%4 108.4 + 8.4A 05x0.3cm  1890.3 +51.9%  1.34 £0.06"* 3.0 +0.2°* 25+0.2%
Position: bottom-right (point 19 of the matrix) Position: bottom-right (point 19 of the matrix)

Control 2057.9 + 71.7°4 1.00 + 0.01%* 298.3 + 2.5 Control 6795.3 + 67.6**  1.45+0.02%A 3.7 +£0.1°** 0.4 +02"
2.0 x 1.5 cm 305.9 + 58.8"* 1.02 + 0.00* 33.5 + 6.4 20x15cm  128.0 + 38.8" 1.33 +£0.08°*  3.2+0.3°* 29+01"
2.0 x 1.0 cm 314.9 + 58.9"* 1.04 + 0.0154 40.4 + 4.1 20x1.0cm  141.6 + 36.8" 1.28 £ 0.05"* 3.1 +02°%  30+01"
1.5 x 0.3 cm 733.9 + 57.6%* 1.02 + 0.01°4 90.7 + 4.8 1.5x 0.3cm  888.5 + 40.6* 1.32 + 0.05%* 324+ 02%  24+01%
1.0 x 0.3 cm 782.2 + 67.7°* 1.03 & 0.01°* 92.8 + 7.3 1.0 x 0.3cem 17221 £59.0  1.37 £0.10°* 3.3+ 0.2"A 24 +02%
0.5 x 0.3 cm 798.5 + 67.44 1.02 + 0.01¢4 96.5 + 5.8 05x0.3cm 18402 +47.64  1.39 £0.02°* 37 +0.1°* 25+0.2%

Mp (zero-order moment), F; (center frequency), and MP (maximum peak of the
frequency spectrum). Results are expressed as mean =+ standard error. Different
lowercase letters indicate statistically significant differences (95 %) for each
ultrasound parameter as a function of the size of bone fragments. Uppercase
letters indicate statistically significant differences (95 %) for the location of
these bone pieces within the chicken breast.

measurements.

By using the average values of PP, ENG and INT computed from time-
domain (Table 1), it was possible to sort the samples from the lowest to
the highest energy level in five homogeneous groups (LSD intervals (p <
0.05) from ANOVA), as follows: control (3.8 V, 424.5 V2 and 204.9V ps)
>0.5x0.3cm(1.8V,123.2 V2and 110.1V ps) > 1.0 x 0.3cm (1.5V,
59.7 V2 and 84.4 V ps) > 1.5 x 0.3 cm (1.1 V, 60.8 V2 and 66.7 V ps), 2.0
% 1.0cm (0.8 V,6.9V2and 30.6 V s) > 2.0 x 1.5cm (0.7 V, 11.5 V2 and
31V ps). Thus, the larger the BF, the lower the energy level and then, the
larger the attenuation. In addition, the statistical results for V, indicated
that there were no significant differences (p > 0.05) in the speed of
ultrasound waves between the control group and BFs of sizes 1.5 x 0.3
cm, 1.0 x 0.3 cm, and 0.5 x 0.3 cm. However, a noticeable decrease in
the ultrasound velocity was found for the largest BF sizes (2.0 x 1.5 cm
and 2.0 x 1.0 cm, Table 1). These results suggest that for small bones the
wave front (used to calculate velocity) travels only through the meat
flesh (where velocity is higher) and therefore velocity is not altered,
compared to the control sample. However, when the bone size is larger,
the wave front has traveled through the bone (with lower ultrasound
velocity than flesh) and therefore ultrasonic velocity decreases. Similar
results were reported by Correia et al. (2008) in the detection of BFs of
different sizes (large size = 15.75 mmz, medium size = 9.92 mm? and
small size = 6.18 mm?) inserted in skinless chicken breasts by using a
single point-measurement using pulse-eco ultrasound technology. These

VAR, (spectral-variance), SKE, (spectral-skewness), KURg, (spectral-kurtosis)
and ENTj, (spectral-entropy). Results are expressed as mean = standard error.
Different lowercase letters indicate statistically significant differences (95 %) for
each ultrasound parameter as a function of the size of bone fragments. Upper-
case letters indicate statistically significant differences (95 %) for the location of
these bone pieces within the chicken breast.

authors quantified the influence of these BFs on both the amplitude ratio
and V.. They found that the presence of BF led to a statistically signifi-
cant (p < 0.05) increase in ultrasonic attenuation, while non statistical
differences (p > 0.05) were found in V. This study reported V. values of
1564 + 2 m/s for chicken breast samples, similar to the values of the
present work (Table 1). Although Correia et al. (2008) claimed that the
Ve could not be used to detect the presence of BFs, the results of the
present work illustrate that the largest BFs, which were obtained from
other parts of the chicken skeleton such as vertebra (2.0 x 1.5 cm,
Fig. 1E i) and chest (2.0 x 1.0 cm, Fig. 1E ii), were detected by using V.

The presence of BF also influenced the energy-distribution parame-
ters calculated from time-domain (VARt, SKEt, KURt and ENTt, Table 2).
Larger BF led to a decrease in the dispersion of the ultrasound waves
(VARY), left-skewed the time-domain signals (positive SKEt values),
reduced the tailedness (KURt) and the randomness (ENTt). Thus, a
noticeable trend was observed from the energy time-domain distribu-
tion, the larger the BFs, the most pronounced changes in the energy-
distribution of the ultrasound signals waves.

As regard of the energy-magnitude related variables computed in the
frequency-domain (M, F; and MP, Table 3), the BF presence within
chicken breast samples significantly (p < 0.05) reduced My and MP
(Fig. 5) and also modified the center-frequency of phs (F;). Multifactor
ANOVA of My and MP, showed three independent groups clustered from
LSD intervals: i) Control ii) BF of 1.5 x 0.3 ¢m, 1.0 x 0.3 cm and 0.5 x
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0.3 cmiii) BF of 2.0 x 1.5 cm and 2.0 x 1.0 cm. While the results of F; led
to also discriminate three groups (Table 3). BF presence also influenced
the phs energy-distribution. Large BF produced an important decrease in
the dispersion of phs (VARg)), right-skewed (positive SKE, values but
smaller than control), reduced the tailedness and increased the disorder
in the distribution of energy of phs (ENTgp). Therefore, the frequency-
domain energy-magnitude and distribution parameters were also
adequate to detect the presence of BFs in the breasts.

3.2. BF detection using USI and latent-based statistical process control

The statistical results considering the USI for the detection of BFs by
using the RSS and T? and the TDA, FDA and TFDA approaches (section
2.7.1 and 2.8), are summarized in Tables 5 to 8. The modeling results
(Tables 5, 6 and 7) reported that the average values of A.. ranged be-
tween 88.2 and 96.07 %, S were between 0.88 and 0.96 and S, varied
from 0.88 to 0.96, for TDA, FDA and TFDA in all CL of both RSS and T2
and their LA. This demonstrates the noteworthy performance of this
approach for detecting BFs using both multivariate control charts (RSS
and T?) computed in the MIA-based strategy.

The statistical results of multifactor ANOVA models computed from
TDA, FDA and TFDA revealed significant differences (p < 0.05) in the
average Acc Se and S, values of the optimized PCA models by using

Table 5

Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control
statistics for detection of bone fragments using time-domain approach (TDA).

TDA-RSS
LA (%) CL(%) OPCs Ac (%) Se Sp
90 6 89.00 + 0.84™*  0.90 + 0.02**  0.88 + 0.02**
o 95 8 91.61 + 0.81%8 0.92 +0.01°®  0.91 + 0.02*®
97.5 12 93.90 + 0.85%€  0.94 +0.02°¢  0.94 + 0.02%¢
99 14 94.25 +1.04*°¢  0.94 + 0.03°°  0.95 + 0.02*¢
90 17 95.44 + 0.90°*  0.96 + 0.01"*  0.95 + 0.02"*
50 95 19 95.49 + 0.82°A  0.96 +0.02°*  0.95 + 0.02"*
97.5 21 95.75 + 0.82°A  0.96 + 0.01"  0.96 + 0.02"*
99 23 95.67 + 0.95*  0.96 +0.01"™  0.96 + 0.02"*
90 20 95.61 + 0.84°*  0.95+0.01"  0.96 + 0.02°*
75 95 23 95.60 + 0.83"A  0.96 +0.01"  0.95 + 0.02"*
97.5 25 95.78 + 0.81"*  0.96 + 0.02"*  0.96 + 0.02"*
99 27 95.90 + 0.92°®  0.96 +0.02°*  0.96 + 0.02°*
90 23 95.72 + 0.79°A  0.96 +0.01"  0.96 + 0.02"*
100 95 25 95.53 + 0.80°*  0.96 + 0.02"*  0.96 + 0.02"*
97.5 26 95.19 + 0.74*  0.95+0.02"®  0.96 + 0.02"*
99 28 95.55 + 1.05"A  0.95 +0.02°*  0.96 + 0.02°*
TDA-T?
LA (%) CL(%) OPCs A. (%) Se Sp
90 42 88.20 £ 1.10%*  0.88 +0.02**  0.88 + 0.02**
o 95 45 91.40 £ 1.04®®  0.92+0.02°®  0.91 + 0.02®
97.5 47 93.38 £ 0.91°C  0.94 +0.02°°  0.93 + 0.02%¢
99 48 94.48 £1.01%®  0.95+0.02°>  0.94 + 0.022¢
90 54 94.89 + 0.97°A  0.94 +0.02>*  0.95 + 0.02"*
50 95 55 95.38 + 1.01°®  0.96 + 0.02"*  0.95 + 0.02"*
97.5 55 95.40 + 0.99°®  0.96 +0.02>*  0.95 + 0.02°*
99 55 95.38 + 1.00°®  0.96 +0.02°*  0.95 + 0.02"*
90 57 95.20 + 1.02°*  0.96 + 0.02"*  0.95 + 0.02"*
75 95 57 95.18 £ 1.01°*  0.96 +0.02>*  0.95 + 0.02°*
97.5 57 95.17 + 1.00°*  0.96 + 0.02°*  0.95 + 0.02"*
99 57 95.14 + 0.99*  0.96 + 0.02°*  0.95 + 0.02"*
90 58 94.94 + 1.00°*  0.95 +0.02"®  0.95 + 0.02"*
100 95 58 94.93 + 1.00°*  0.94 +0.02>*  0.95 + 0.02°*
97.5 58 94.93 + 0.99°*  0.94 +0.02>*  0.95 + 0.02"*
99 58 94.92 + 0.98"*  0.94 +0.02>®  0.95 + 0.02"*

TDA (time-domain approach), RSS (Residual Sum Squares), T2 (Hotelling T-
squared), LA (limit augmentation), CL (control limit), OPCs (optimal number of
principal components), A.. (overall accuracy), S (sensibility) and S, (speci-
ficity). Results are expressed as mean + standard error. Different lowercase
letters indicate statistically significant differences (95 %) of each goodness of
classification metric (Acc, Se and Sp) as a function of the LA. Uppercase letters
indicate statistically significant differences (95 %) of A, S. and S;, as a function
of the computed CL.
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Table 6

Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control
statistics for detection of bone fragments using frequency-domain approach
(FDA).

FDA-RSS

LA(%) CL(%) OPCs Ac (%) Se S,
90 6 89.31 +1.23**  0.90 + 0.04** 0.88 + 0.02°4

0 95 8 91.75 + 0.84*®  0.92 + 0.01%* 0.91 + 0.02°®
97.5 10 93.35 +£1.13%®  0.93 + 0.03** 0.94 + 0.02°¢
99 12 95.40 +1.10°¢  0.96 + 0.02%® 0.95 + 0.02°¢
90 15 95.44 + 0.96"  0.95 + 0.02°* 0.96 + 0.02°4

95.83 + 0.96 + 0.96 +

50 95 17 0.98%4 0.020A8 0.02°4
97.5 19 95.85 + 0.95"*  0.96 + 0.01°® 0.96 + 0.02"*
99 20 95.63 + 0.99°*  0.96 + 0.02°" 0.96 + 0.02°*
90 18 95.84 + 0.91°  0.96 + 0.01° 0.96 + 0.02°*

- 95 20 95.80 + 0.84°A  0.95 + 0.02"* 0.96 + 0.02"*
97.5 21 95.44 + 0.92°*  0.95 + 0.02°* 0.96 + 0.02°*
99 23 95.77 + 0.81°*  0.96 + 0.01°* 0.95 + 0.02°*
90 21 95.72 + 0.84"A  0.96 + 0.01°* 0.96 + 0.02°*

100 95 23 95.93 + 0.73"A  0.96 + 0.01™ 0.96 + 0.02°*
97.5 24 95.74 + 0.90°*  0.96 + 0.02°* 0.96 + 0.02°*
99 25 95.61 + 0.81°A  0.96 + 0.02°* 0.96 + 0.02°*

FDA-T?

LA(%) CL(%) OPCs Ac (%) Se Sy
90 41 88.07 +1.32*A  0.88 + 0.03** 0.88 + 0.02%4

0 95 43 91.35 + 1.36®®  0.91 + 0.03%® 0.92 + 0.02%8
97.5 45 93.67 + 1.17%¢  0.94 + 0.02°C 0.94 + 0.02°C
99 46 94.94 +0.92®  0.95 + 0.02°C 0.95 + 0.02%¢
90 55 95.49 + 0.88"A  0.96 + 0.02"* 0.95 + 0.02°*

95.44 + ba  0.95 +

50 95 55 0.85% 0.95 + 0.02 0,025
97.5 55 95.44 + 0.84"A  0.95 + 0.02"* 0.95 + 0.02°*
99 55 95.41 + 0.83"*  0.95 + 0.02"* 0.95 + 0.02°4
90 57 95.30 + 0.90°*  0.95 + 0.02°* 0.95 + 0.02°*

75 95 57 95.25 + 0.91°  0.95 + 0.02°* 0.95 + 0.02°*
97.5 57 95.25 + 0.91°  0.95 + 0.02"* 0.95 + 0.02°*
99 57 95.24 + 0.91°  0.95 + 0.02°* 0.95 + 0.02°*
90 59 95.29 + 0.96"*  0.95 + 0.02°* 0.95 + 0.02°*

100 95 59 95.30 + 0.96"  0.95 + 0.02"* 0.95 + 0.02°*
97.5 59 95.30 + 0.96™  0.95 + 0.02°* 0.95 + 0.02°4
99 59 95.30 + 0.96"*  0.95 + 0.02°* 0.95 + 0.02°*

FDA (frequency-domain approach), RSS (Residual Sum Squares), T2 (Hotelling
T-squared), LA (limit augmentation), CL (control limit), OPCs (optimal number
of principal components), A.. (overall accuracy), S, (sensibility) and S, (speci-
ficity). Results are expressed as mean =+ standard error. Different lowercase
letters indicate statistically significant differences (95 %) of each goodness of
classification metric (A, Se and S;) as a function of the LA. Uppercase letters
indicate statistically significant differences (95 %) of A, S. and S, as a function
of the computed CL.

different CL and LA (Tables 5-7). However, for TFDA-TZ, the residuals of
the multifactor ANOVA models performed on Se and S;, did not meet the
assumptions of normality and homoscedasticity, rendering those
ANOVA models unsuitable for statistically comparing the PCA-T? results
at different CL and LA.

In every case (Tables 5-7), the statistical ANOVA procedures were
conducted considering the optimized PCA models obtained from the
multi-objective optimization process (section 2.8) to simultaneously
maximize both S, and S, with the lowest number of LVs (Fig. 6). It can be
seen in Fig. 6 the typical plateau of the classification metrics via RSS
employing TDA (A, Fig. 6A, Se vs Sy, Fig. 6B), FDA (A, Fig. 6E, Se vs
Sp, Fig. 6F) and TFDA (A, Fig. 61, Se vs Sp, Fig. 6J) and for T2 using TDA
(Acc, Fig. 6C, Se vs Sp, Fig. 6D), FDA (A, Fig. 6G, Se vs Sp, Fig. 6H) and
TFDA (A, Fig. 6K, Se vs S, Fig. 6L), wherein the multi-objective opti-
mization problem found the OPCs in all cases in the point of crossing of
Se and Sp,. The results of TDA (Table 5) showed a great classification
performance of control and OC USI. Based on the LSD intervals, the
optimized PCA model using RSS with 17 OPCs, employing LA50%-
CL90% exhibited high classification performance (A.c = 95.44 %, Se =
0.96 and S, = 0.95) with the minimum number of LVs. In contrast, the
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Table 7
Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control
statistics for detection of bone fragments using time-frequency domain approach
(TFDA).
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Table 8

Classification performance of the Residual Sum Squares (RSS) and Hotelling’s T-
squared (T?) multivariate control statistics in the detection of varying-size bone
fragments using the time-domain (TDA), frequency-domain (FDA) and time-
frequency domain (TFDA) approaches.

TFDA-RSS TDA Number of samples (predicted)
LA (%) CL (%) OPCs A (%) Se S, Type Number of samples (real) RSS T?
90 6 88.24 +1.20**  0.88 +0.03**  0.89 + 0.02**
o 95 8 03.02+0.65®  0.94+0.01°®  0.92 +0.02° 20x15em 15 15 15
97.5 9 94.46 £ 0.86°C  0.95 £ 0.02°C  0.94 + 0.02°C 2.0 x 1.0 cm 17 17 17
99 11 95.42 + 0.96°C  0.95 + 0.02°C  0.95 + 0.02%C 1.5>0.3 cm 17 16 16
90 15 96.07 + 0.86"*  0.96 + 0.01°*  0.96 + 0.02°* 1.0 x 0.3 cm 15 14 14
s0 95 16 96.03 £ 0.85"  0.96 +£0.01"  0.96 + 0.02" Oo‘é’ x 0.3 cm 17 ;15) Cgan ;}5) Cgin
97.5 19 95.88 + 0.81"  0.96 + 0.01°*  0.96 + 0.02"* 81
99 20 95.81 +0.81"  0.96 +0.01"*  0.96 + 0.02* (all types) FN=38+1 FN=3+1
90 19 9581 = 0.78"  0.96 +£0.01°*  0.96 + 0.02°* Control 81 IN=77+2 IN=77%2
95 21 95.80 + 0.87°*  0.96 £ 0.01°*  0.96 + 0.02"* (Cear+ Cev) FP=4+2 FP=4+2
75 97.5 22 95.77 +0.91°  0.96 + 0.01"  0.96 + 0.02° Ceal 73 TNea = 71 TNea =71
99 23 95.75 + 0.84°*  0.96 + 0.01°*  0.96 + 0.02°* Cev 8 TNy =6 TNw = 6
90 22 95.85 + 0.80™  0.96 £ 0.01®  0.96 + 0.02"* FDA Number of samples (predicted)
95 24 9570 £ 0.83"*  0.96 £ 0.01®  0.96 + 0.02" Type Number of samples (real) RSS T
100 975 26 95.70 + 0.86"  0.96 + 0.01"*  0.96 + 0.02* 20> 15em 15 15 15
99 28 95.89 + 0.81"  0.96 £ 0.01"  0.96 + 0.02" 2.0 1.0 cm 17 17 17
TFDA-T? 1.5 x 0.3 cm 17 17 16
LA CLOG OPCs  Ac (%) . 5" 1.0 x 0.3 cm 15 14 14
90 47 88.20 £ 1.19°*  0.88 £ 0.03 0.88 + 0.02 0.5 0.3 em 17 15 15
0 95 50 91.99 + 0.87"  0.92 % 0.02 0.92 + 0.02 oc " 81 Tp=78+1 p=77%1
97.5 51 93.57 £1.03°C  0.93 + 0.02 0.94 + 0.02 (all types) FN=38+1 PN =41
99 52 94.23 +0.85°C  0.94 +0.01 0.94 + 0.02 Control 81 IN=78+2 IN=77%2
90 59 94.58 + 1.01°  0.93 + 0.03 0.96 + 0.03 (Cear+ Cev) FP=3+2 FP=44+2
50 95 59 94.54 +1.03"*  0.93 £ 0.03 0.96 + 0.03 Sl ;3 ;E“‘:zz gml:gl
97.5 59 94.54 £1.03"  0.93 £ 0.03 0.96 + 0.03 EV v v
99 59 94.54 £1.03"*  0.93 +0.03 0.96 + 0.03 TFDA Number of samples (predicted)
) 60 93.09 + 1.44C 092 + 0.05 0.94 + 0.03 Type Number of samples (real) RSS T
s 95 60 93.09 +1.43C  0.92 + 0.05 0.94 + 0.03 i'g i 13 22 13 1; 1?
97.5 60 93.09 +1.43C  0.92 + 0.05 0.94 + 0.03 e
99 60 93.09 £ 143 0.92 £ 0.05 0.94 + 0.03 1.5>0.3 cm 17 16 15
90 61 92,91 +2.63C  0.93 + 0.08 0.93 + 0.03 1.0 0.3 cm 15 14 14
100 95 61 92,91 +2.63C  0.93 +0.08 0.93 + 0.03 00'2 x 0.3 em 17 ;g g1 _lns) Ceis
975 61 92.91 £ 263 0.93 +0.08 0.93 + 0.03 81
99 61 92.91 +2.63C  0.93 + 0.08 0.93 + 0.03 (all types) FN=3+1 FN=5%2
Control 81 TN=78+1 TN=78+2
TFDA (time-frequency domain approach), RSS (Residual Sum Squares), T2 (Cear+ Cev) FP=3+1 FP=3+2
(Hotelling T-squared), LA (limit augmentation), CL (control limit), OPCs Ceal 73 TNeal = 72 TNea = 72
Cev 8 TNw = 6 TNy = 6

(optimal number of principal components), A, (overall accuracy), S, (sensibil-
ity) and S, (specificity). Results are expressed as mean =+ standard error.
Different lowercase letters indicate statistically significant differences (95 %) of
A as a function of the LA. Uppercase letters indicate statistically significant
differences (95 %) of A.. as a function of the computed CL. *The residuals from
multifactor analysis of variance (ANOVA) models failed to meet the assumptions
of normality and homoscedasticity, thus rendering both models unsuitable for
practical inference.

optimized PCA model using T? required more LVs (OPCs = 55), main-
taining the LA50%-CL95 % to achieve similar classification performance
to RSS. Closely, the statistical results of FDA (Table 6) exhibited quite
similar behavior of TDA, the optimized PCA using RSS with 17 LVs and
LA50%-CL95 % showed an A = 95.85 %, S. = 0.96 and S, = 0.96 and
T2 control statistic reached an Ac = 95.44 %, Se = 0.95 and S, =0.95
using 55 LVs and the same LA and CL of RSS.

As expected, the classification results for TDA and FDA were closely
aligned by using both RSS and T2 (Tables 5 and 6). This result could be
attributed to the fact that the presence of BFs produced an important
attenuation of the ultrasound energy (Suen et al., 2016). Therefore, the
PCA model-based RSS and T? were able to satisfactorily detect BF by
using both energy-magnitude and energy distribution parameters from
the time and frequency domains (as explained in section 3.1). The
detection via RSS suggested that the BF presence led to a detectable
breakage in the correlation structure of the control model and T2 indi-
cated extreme values (lower energy related and magnitude values of
ultrasound parameters) in these images compared to the control ones
(Kruse et al., 2014). Nevertheless, the RSS statistics were the most robust
classifier to maximize the goodness of classification of control and OC
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TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-
frequency domain approach), RSS (Residual Sum Squares), T?> (Hotelling T-
squared), OC (out-of-control), C., (control images for PCA calibration), Cgy
(control images for PCA external validation), TP (true positive), TN (true
negative), TN, (true negative for calibration images), TNy (true negative for
external validation images), FP (false positive) and FN (false negative). Results
are expressed as mean =+ standard error.

images due to its simplicity in the use of lower number of LVs than the T2
statistic (17 vs 55 LVs, respectively; Tables 5-6).

The statistical results of the TFDA approach (Table 7) integrating
TDA and FDA ones, slightly improved the classification performance of
RSS and did not evidence an important improvement using T2. In this
regard, when model input variables potentially contribute to describing
the response, selecting specific input variables can improve model re-
sults. Conversely, adding more variables could worsen the model’s ac-
curacy (Zhang, 2014). Therefore, the use of TFDA-RSS contributed to
not only a slight increase in A, Se and Sy, but also to reduced 2 LVs (15
OPCs, Table 7, Fig. 61 and J) maintaining the LA50%-CL95 %. While, in
the case of T2, the combination of TDA and FDA in the same framework
to feed the PCA model caused redundance (features which have
explained the same extreme values) and promoted the use of more LVs
(Fig. 6K and L). This result suggested that the combination of both
energy-related and energy-magnitude ultrasound parameters computed
in the time and frequency domains made the PCA model more robust for
the detection of any disturbance in the correlation structure not only
between the variables referred with the energy and distribution in time
and frequency domains but also the relationship between both spaces,
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Fig. 6. Classification performance of the multivariate control statistics used for detection of bone fragments in chicken breast fillets. Average A.. for both RSS and T2
considering TDA (A, C), FDA (E, G) and TFDA (I, K) approaches. Average S, and S, for both RSS and T2 considering TDA (B, D), FDA (F, H) and TFDA (J, L) ap-
proaches. TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency domain approach), A.. (overall accuracy), S. (sensibility), S,

(specificity), RSS (Residual Sum Squares) and T? (Hotelling T-squared).

thus, less LVs were needed to maximize the classification of control and
OC images.

To evaluate the classification performance of the LSD based opti-
mized PCA models influenced by the approaches considered, the sta-
tistical results in Table 8 illustrate together the CFMs, the number of
images correctly classified and misclassified by using both multivariate
control statistics. As can be seen, the RSS and T? using TDA, FDA and
TFDA were able to detect all of OC USI within the larger BFs (2.0 x 1.5
cm and 2.0 x 1.0 cm), while in the detection of the smaller BFs sizes (1.5
x 0.3 ¢cm, 1.0 x 0.3 cm and 0.5 x 0.3 cm), there were 1 4 1 (from the
100 times randomly partition of data sets) of these OC USI incorrectly
classified. Additionally, these optimized models did not correctly clas-
sify at least 3 &+ 1 control images (from Cc, and Cgy) in all approaches
(Table 8), which can be attributed to the natural variability of poultry
meat (Garrido-Novell et al., 2018). The inherent variability such as
compositional variations (lean meat and fat components) and intricate
structural arrangement (tendons and connective tissues of poultry
samples) could contribute to increase variability in control USI (Farinas,
Sanchez-Torres, et al., 2021). Beyond the inherent variability of chicken
breast fillets, the occurrence of FN and FP can be further explained by
the relationship between the optimization criteria and the model’s
detection capabilities. In all approaches (TDA, FDA, and TFDA; Fig. 6),
the OPCs were selected to achieve a balance by simultaneously maxi-
mizing Se and Sp. This objective meant that the optimal number of LVs
did not correspond to the absolute maximum of either S, or S, indi-
vidually. As a result, the model’s ability to completely minimize
misclassification rates was limited. By applying the methodology pro-
posed in this study and expanding the dataset for model validation,
particularly for control samples, more robust and accurate statistical
models could be developed (Novack et al., 2024). This would be crucial
for addressing the challenges of industrial BF detection in the poultry
industry.

As already explained, the use of TFDA-RSS slightly improved the
goodness classification metrics compared to TDA-RSS and FDA-RSS. The
confidence interval for Acc (96.07 %), based on the dataset used, ranged

11

from 95.74 % to 96.85 %. A narrower confidence interval could be
achieved by increasing the sample size. This improvement was achieved
by the increase in the detection of one sample within BF of 0.5 x 0.3 cm
compared to FDA and the increase in correctly classification of one
control image compared to TDA (Table 8). Further, it can also be noticed
that FDA-RSS was able to detect all medium-size BFs (1.5 x 0.3 cm).
Regarding the T2 statistic (Table 8), the classification rate of control and
OC images did not significantly improve by using TFDA. In addition, the
classification performance of RSS and T? was equivalent by using TDA
and moderate better in RSS compared to T2 in FDA (reduction of 1 FN
and FP by RSS) using lower number of LVs. Thus, either TFDA-RSS or
FDA-RSS could be considered as the best option for practical industrial
implementation. Results obtained in the present work were similar to
those obtained by Zhao et al. (2006) in the detection of glass fragments
within beverages packaged in glass containers by the integration of
contact ultrasonics and Artificial Neural Networks (ANN). Nonetheless,
the differential aspect of this work lies in the capability of the ultrasonic
system used in the present work to inspect the entire product, rather
than being confined to single-point measurements for detecting foreign
bodies. This capability provides a significant advantage in analyzing the
presence of foreign bodies, regardless of their location within food
products.

Regarding the meat industry, several approaches have been explored
for detecting BF in chicken breast fillets. Yoon et al. (2007) used a Near-
Infrared (NIR) spectroscopy-based system to identify BF, achieving A..
> 90 %. Similarly, McFarlane et al. (2003) utilized X-ray backscatter
techniques to detect clavicles and near-surface BF, reporting detection
rates of approximately 85 % < A < 95 %. Nevertheless, X-ray-based
methods, in general, are characterized by a significant drawback: they
are expensive to operate, need costly equipment, pose risks to operators,
and require complex post-image processing.

Moreover, spectroscopy-based sensors have also been extensively
used to detect food adulteration and contamination. Fengou, Lianou
et al. (2021) demonstrated the effectiveness of these sensors in identi-
fying adulteration in minced pork and chicken, with accuracy rates
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ranging from 92 % < A.. < 96 %, depending on the type of adulterant
and sample preparation. Similarly, Fengou, Tsakanikas et al. (2021)
explored the rapid detection of adulterants in minced meat using
advanced spectroscopic methods, showcasing their potential for high-
throughput applications. These techniques offer rapid, non-destructive
detection, but they often require highly specialized equipment and
extensive data preprocessing for model calibration and validation.
Conversely, the proposed USI combined with MIA offers a cost-effective,
safe, and efficient alternative for real-time detection of BF in chicken
breast fillets. The classification performance of the USI-MIA approach in
this study reached A.. > 95 %, comparable to or exceeding that of X-ray
and hyperspectral imaging. Moreover, the non-invasive nature of US,
coupled with the minimal post-processing required by MIA, underscores
its suitability for industrial-scale implementation.

3.2.1. Influence of training and validation dataset size on the BF detection
The statistical results for the detection of BF by using both RSS and T2
which considered the TDA, FDA and TFDA approaches and four different
datasets of total USI (100 %, 75 %, 50 % and 25 %), are depicted in
Fig. 7. As can be observed (Fig. 7) the higher the USI in the analysis, the
better the performance (progressively increase of A.., ranging between
80 % to 96 %) of both statistics for all the approaches. The increase in
the USI number led to the model becoming more robust with more im-
ages for model calibration (Hu et al., 2018). Thus, as can be seen for the
RSS, which has provided the best classification results in all of the ap-
proaches, the difference between considering the entire batch of samples
or 75 % of the total samples, is moderate (< 4 % for TDA and < 3 % for
FDA and TFDA, respectively; Fig. 7A, B and C). This fact indicates that
the typical plateau value, as observed when plotting A.. versus the
number of samples (Hu et al., 2018), has already been reached. The high
percentage of correctly classified samples (>95 %) suggests that the
number of samples tested in the present study (162, all data) was suf-
ficient to maximize the detection of BFs in the selected approach (TDA,
FDA, and/or TFDA) and the RSS multivariate control statistic used.
This study represents an initial step toward developing an accurate
and robust quality monitoring system for detecting internal BF in
chicken breast fillets. Future research should focus on assessing the
detection limit of ultrasound technology in the identification of smallest
bone size than the used in this study. To achieve this, it is essential to
evaluate the suitability of the frequency employed in the current ultra-
sound transducer or explore the use of higher frequencies with focused
transducers. Additionally, the detection performance of foreign bodies
obtained from other materials, such as plastics, metal fragments, and
glass, by the integration of USI and MIA is also a significant task that
should be assessed. Ultrasonic detection of those foreign bodies could be
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feasible as long as the acoustic impedance of the object differs from that
of the surrounding food. In fact, the use of contact ultrasound has
already yielded accurate results for detecting such materials within
various food matrices (Heaggstrom & Luukkala, 2001; Leemans &
Destain, 2009; Zhao et al., 2006), thus, the use of USI should be also
evaluated.

The integrated use of USI and MIA for detecting BF in poultry meat
presents a promising low-cost alternative to traditional technologies
based on X-rays and NIR. This approach offers a practical solution for
implementation immediately after the chicken deboning line, as the
natural surface moisture and physical properties of the chicken fillets
facilitate efficient coupling between the transducer and the material. By
utilizing array-type transducers, similar to those used in medical ultra-
sound, the precision and effectiveness of the system can be further
enhanced. Adopting this method would not only reduce customer
complaints but also ensure consistent product quality and, most
importantly, guarantee the safety of the final product.

In the context of food safety, standards set by organizations such as
the USDA Food Safety and Inspection Service (FSIS) in the United States
and the European Food Safety Authority (EFSA) in the European Union
require rigorous monitoring to ensure that processed meat products are
free from contaminants and BF. These regulations aim to protect con-
sumers from physical hazards that can lead to injuries or dissatisfaction,
while also maintaining trust in food processing systems by minimizing
recalls and non-compliance penalties. The development of real-time,
non-invasive detection systems, such as the explored in this study,
provides the industry with a means to ensure consistent compliance with
these quality standards. This research highlights the crucial role of real-
time detection systems in actual food processing, demonstrating their
advantages over traditional methods in terms of speed, efficiency, non-
invasiveness, and seamless adaptability to automation.

4. Conclusions

Contact ultrasound imaging has proven to be an effective and valu-
able technology for detecting bone fragments of varying sizes, regardless
of their location within the chicken breast. The difference in acoustic
impedance between the chicken breast and the bone fragments
increased energy attenuation, which was linked to the lower ultrasonic
velocity and air-filled porous structure of chicken bones. The energy-
magnitude and energy-distribution ultrasound parameters, computed
in the time-frequency domains, effectively detected the bone fragments
within chicken breast fillets. Both temporal and frequency-based ap-
proaches quantified similar information regarding ultrasound signal
attenuation and alterations in the wave distribution caused by the
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Fig. 7. Average A.. performance of RSS and T2 control statistics used for detection of bone fragments in chicken breast fillets using different number of ultrasound
images. Results for TDA (A), FDA (B) and TFDA (C). TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency domain approach), A

(overall accuracy), RSS (Residual Sum Squares) and T2 (Hotelling T-squared).
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presence of varying sizes of bone fragments. The detection of bone
fragments was influenced by their size, although good classification
results were found for smaller bone fragments.

The Residual Sum Squares multivariate control statistic has proven
to be the most robust for detecting bone fragments within chicken
breasts, irrespective of the ultrasound parameters (time-frequency) used
during the model’s tuning. This approach has emerged as a valuable tool
for integration into a monitoring system, facilitating the classification of
contact ultrasound images of control chicken breasts and those con-
taining bone fragments. Future work should be conducted in order to
assess the detection limits of contact ultrasound technology for detecting
small-sized bone fragments and to detect foreign bodies of different
nature, such as plastics, glass, and metal pieces, which could also
contaminate the chicken breast during the manufacturing process.
Expanding the dataset would enable the development of more robust
and accurate statistical models, which are essential for effective indus-
trial BF detection in the poultry industry. In addition, the development
of ultrasonic arrays has to be also addressed in order to improve mea-
surement rate at industrial level. These aspects will be essential to
develop a robust industrial prototype that can be used for real-time
quality monitoring of the entire poultry meat production.
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