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a Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Instituto Universitario de Ingeniería de Alimentos–FoodUPV, Universitat Politècnica de València, 
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A B S T R A C T

Poultry meat industry requires intelligent systems for achieving non-invasive real-time detection of bone frag
ments. Therefore, the main aim of this study was to assess the feasibility of using ultrasound imaging and 
multivariate image analysis to detect bone fragments in boneless and skinless chicken breast fillets. Bone frag
ments of different sizes were inserted into the chicken and contact ultrasound images were acquired, following a 
pre-established pattern, in the control (C) and out-control (OC, with bone) samples, by scanning the breast’s 
surface, using contact ultrasound sensors (1 MHz) working in through transmission. Energy-magnitude and 
energy-distribution ultrasound parameters were computed at pixel level in time (TDA) and frequency domain 
(FDA). Principal Component Analysis (PCA) was used in TDA and FDA parameters, and its combination (TFDA). 
From PCA model, the Residual Sum Squares (RSS) and Hotelling’s T-square (T2) control statistics were used to 
classify the C and OC images projected on the PCA latent structure. Experimental results demonstrated that the 
presence of bone fragments within chicken breast fillets led to alterations in the energy-magnitude (avg. 
amplitude decrease from 81.6 % to 52.6 %, depending on the bone size) and energy-distribution ultrasound 
parameters (avg. variance decreased from 97.9 % to 70.6 % depending on the bone size). The RSS statistic 
achieved the best classification performance (accuracy of TDA, FDA and TFDA>95 %) in C and OC images. These 
results highlight the potential of combining contact ultrasound imaging with multivariate image analysis for the 
reliable and rapid detection of bone fragments in chicken breasts.

1. Introduction

The poultry meat industry has undergone a rapid expansion in recent 
years, and it is currently the most produced meat worldwide (Aggrey 
et al., 2023; Fang et al., 2023). The consumption of poultry meat is 
increasing, due to its affordability and high nutritional value (Jiang 
et al., 2018). However, poultry meat production encounters several 
challenges, related to the assurance of product quality and safety. 
Moreover, another relevant concern is avoiding the presence of foreign 
bodies in the final manufactured products. Foreign bodies represent a 
physical risk in food safety, and in the poultry meat industry (Nielsen 
et al., 2013), bone fragments (BF) are a persistent problem. Different 
techniques, such magnetic detectors, X-rays, and hyperspectral sensors, 
have been extensively used in the detection of foreign bodies within food 

products (Yaqoob et al., 2021). These methods come with certain limi
tations for food inspection, such as the high cost of equipment and 
maintenance, challenges associated with their integration into food 
processing lines, and, in some cases, limited penetration capability to 
thoroughly analyze the internal structure of food 
(Pérez-Santaescolástica et al., 2019).

Ultrasound has been employed as a valuable tool for the non- 
destructive testing of food materials. Ultrasound offers advantages 
over the aforementioned technologies: it enables faster inspection, it is 
cost-efficient, versatile, easy to manipulate, safe for personnel, and 
suitable for real-time in-line application (Fariñas, Contreras, et al., 
2021). Consequently, the US has emerged as a promising technology for 
detecting foreign bodies in foods. The conventional method for 
analyzing food products and processes rely on the contact ultrasonics 

* Corresponding author.
E-mail address: jjbenedi@tal.upv.es (J. Benedito). 

Contents lists available at ScienceDirect

Food Research International

journal homepage: www.elsevier.com/locate/foodres

https://doi.org/10.1016/j.foodres.2025.116047
Received 11 December 2024; Received in revised form 17 February 2025; Accepted 21 February 2025  

Food Research International 206 (2025) 116047 

Available online 23 February 2025 
0963-9969/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:jjbenedi@tal.upv.es
www.sciencedirect.com/science/journal/09639969
https://www.elsevier.com/locate/foodres
https://doi.org/10.1016/j.foodres.2025.116047
https://doi.org/10.1016/j.foodres.2025.116047
http://crossmark.crossref.org/dialog/?doi=10.1016/j.foodres.2025.116047&domain=pdf


technology. In contact ultrasonics, sensors require close contact with the 
food material to eliminate air gaps at the sensor-sample interface and 
enhance energy transfer into the sample. This contact is achieved 
through the use of coupling materials such as water, oil, or glycerine 
(Sanchez-Jimenez et al., 2023) and/or by applying a slight static pres
sure. In the meat sector, contact ultrasonics measurements have been 
satisfactorily employed for monitoring the physicochemical modifica
tions in beef steaks during the dry salting process (Fariñas et al., 2023), 
for on-line monitoring of the ham salting process (Garcia-Perez et al., 
2019) or for the characterization of dry-cured ham (Corona et al., 2013), 
among other applications (Gao et al., 2024; Grassi et al., 2024; Sun et al., 
2023). Regarding the detection of BF in chicken breast, Correia et al. 
(2008) designed and assembled an ultrasonic system based on contact 
ultrasonics in pulse-echo mode. The effectiveness of their system showed 
an acceptable detection of fragments ranging from 6 mm2 to 16 mm2. 
However, important limitations related with experimental variability, 
leading to inconsistent and unreliable measurements.

An additional benefit of ultrasound lies in its capacity for spatial 
analysis of food products by creating ultrasound images (USI). USI 
serves as a valuable non-destructive tool for inspecting food by scanning 
the surface of the product (Gan, 2020). It offers a spatial representation 
of internal characteristics, facilitating the evaluation of physicochemical 
attributes related to composition, texture or internal irregularities, such 
as the foreign bodies presence. The massive volume of data generated by 
using USI requires robust computing models to extract relevant infor
mation. In this sense, pattern recognition techniques constitute an 
advanced tool (Ozturk et al., 2023), and are classified into two cate
gories: unsupervised techniques and supervised techniques (Jiménez- 
Carvelo et al., 2019). The principal component analysis (PCA) is one of 
the most unsupervised techniques used not only for exploratory analysis 
purposes, but also is the basis for applying the multivariate image 
analysis (MIA) procedure. MIA is mostly considered a valuable statistical 
methodology for understanding the relationships and structures within 
datasets (Duchesne et al., 2012). Furthermore, MIA-based Statistical 
Process Control (SPC) can be applied for process monitoring and foreign 
bodies detection based on an image (Prats-Montalbán et al., 2011). The 
integration of US and Pattern recognition supervised techniques has 
been previously employed in various applications, including the moni
toring of yogurt fermentation process (Bowler et al., 2023), tracking the 
drying of potato slices (Sanchez-Jimenez et al., 2023), the detection of 

internal cracks in Manchego cheese (Conde et al., 2008), and has also 
been used for assessing the coconut maturity (Caladcad et al., 2020). 
However, the calibration of these models required the use of a latent 
space (latent variables- LVs, from PCA) as an input of those techniques 
(Jiménez-Carvelo et al., 2019), which means an additional calculation in 
the setting of the optimal number of the LVs and the optimization of the 
hyperparameters belonging to each supervised technique, to achieve the 
model’s goal. Therefore, using PCA as an analytical tool can circumvent 
the abovementioned issues. There is a notable gap in the existing liter
ature regarding the integration of MIA-based SPC and USI for aiding in 
the detection of foreign bodies in food products. In particular, the 
integration of MIA and USI for the detection of BFs in poultry meat has 
not been previously addressed. Therefore, this work aims to investigate 
the feasibility of utilizing contact USI and MIA parameters for the 
detection of varying-sized BF in chicken breast.

2. Materials and methods

2.1. Chicken breast samples

Skinless and boneless chicken breast samples were purchased from a 
local grocery store in Valencia (Spain) and kept in refrigeration at 4 ◦C 
until use (Fig. 1A). The fresh breasts were then cut into 5 × 5 cm fillet 
samples with a thickness of about 1.5 cm (Fig. 1B). Fresh fillet samples 
with no BF were considered as the control samples.

2.2. Bone fragments

A BF set extracted from different parts of the chicken skeleton was 
used. For this purpose, a whole chicken was purchased, boiled for 20 
min at 80 ◦C, and then manually deboned, in order to only extract BF. 
The remaining boiled chicken was discarded, as the analyses were 
conducted exclusively on fresh chicken samples, as described in section 
2.1.

The BF used in the experiments (Fig. 1E) consisted of a bone obtained 
from dorsal vertebrae with dimensions of 2.0 × 1.5 cm (Fig. 1Ei), a 
fragment taken from the chest bone of 2.0 × 1.0 cm (Fig. 1Eii), and three 
different fragments extracted from the chicken rib with sizes of 1.5 ×
0.3 cm (Fig. 1Eiii), 1.0 × 0.3 cm (Fig. 1Eiv) and 0.5 × 0.3 cm (Fig. 1Ev). 
Dimensions make reference to maximum height and width of BF.

Fig. 1. Flowchart of the main steps to prepare control and OC (out-of-control) samples. A, B, C and D for control images, and C, B, E, F, G and H for OC images.
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2.3. Ultrasound experimental set-up

USI were acquired using the experimental set-up illustrated in Fig. 2. 
The equipment consisted of a computer (Fig. 2A), an oscilloscope 
(Fig. 2B, MDO3024, Tektronix, WA, USA), an ultrasonic pulser-receiver 
(Fig. 2C, 5077 PR, Olympus, Houston, TX, USA), a pair of commercial 
ultrasound transducers (Fig. 2D, A314S-SU model, Panametrics, Wal
tham, MA, USA) of 1 MHz central frequency and 1 cm of diameter, 
operating in through-transmission mode and a digital caliper (Fig. 2F, 
192–633 Serie, Mitutoyo, Japan). A program was developed in Lab
VIEW® 2018 (National Instruments, Austin, TX, USA) to record the ul
trasonic signals from the oscilloscope.

2.4. Experimental procedure

Control samples fillets (without BF) were placed in polystyrene 
plates (86.4 ± 0.1 mm diameter, 14 ± 0.1 mm thickness) (Fig. 1C) in 
order to measure the ultrasound signals in the same locations for each 
sample, thus obtaining the USI. To achieve this, on the surface of 
polystyrene plates, a pre-established pattern was previously drawn 
consisting on a matrix of 25 points (5 × 5 cm) separated every 1 cm 
(Fig. 1C). Each point of this matrix corresponded to a pixel of the image 
(Fig. 1D). After ultrasonic measurements were performed, each type of 
BF was inserted into the previously measured control samples, using a 
laboratory forceps, trying to place it equidistant from each face of the 
chicken breast sample. Each BF was placed in five different locations 
(Fig. 1F), namely, the top-left, top-right, center, bottom-left and bottom- 
right, corresponding to the position 7, 9, 13, 17 and 19 of the pre- 
established matrices (Fig. 1G), respectively. Thus, OC ultrasound im
ages (Fig. 1H) were obtained. USI was obtained for the different BF (n =
5, Fig. 1E) in triplicate (n = 3) placed in each location (n = 5, Fig. 1F). 
Thus, a total of 75 chicken samples (5 × 5 × 3) were needed. Six 
additional samples were measured to increase the number of observa
tions; thus, 81 chicken breast samples (Fig. 1B) were analyzed.

In each measurement point (Fig. 1C), two types of ultrasound signals 
(10 k points, average of 128 acquisitions) in the time-domain were ob
tained. The first one was acquired with gain of − 20 dB and used to 
compute the energy-related ultrasound parameters in the time (section 
2.5.1) and frequency (section 2.5.2) domains. Then, a second type of 
ultrasound signal was acquired with a gain of 0 dB (Fig. 2C) to calculate 
the ultrasound velocity (section 2.5.1). Thus, two types of 3D images of 
5 × 5 cm (spatial dimensions-2D of scanned product’s surface) × 10 k 
points (measured ultrasound signal at each point-1D) were acquired in 

every run. Moreover, the thickness of the samples was gathered for each 
pixel using the digital caliper.

2.5. Feature extraction

Different parameters related to energy and also the ultrasonic ve
locity was computed at pixel level, thus, each parameter summarized a 
channel of the image. As an example, if six parameters were estimated 
from a 3D image, a new image of 5 × 5 (spatial dimensions) × 6 
(computed parameters) may be obtained.

2.5.1. Time domain analysis
Energy-magnitude ultrasound parameters such as peak-to-peak dis

tance (PP, V), energy (ENG, V2) and integral of signals (INT, V μs) 
(Bowler et al., 2023) and ultrasound velocity (Ve, m/s) were computed 
in the time-domain. The INT was computed by using the trapezoidal 
numerical method “trapz” of MATLAB® R2023a (The MathWorks Inc., 
Natick, MA, USA). The Variance (VARt, V2), skewness (SKEt), kurtosis 
(KURt) and entropy (ENTt) of ultrasound signals were also computed 
using “var”, “skewness”, “kurtosis” and “entropy” MATLAB functions 
(Caesarendra & Tjahjowidodo, 2017). 

PP = max(Xt)–max|min(Xt) | (1) 

ENG = ‖Xt‖
2 (2) 

INT =
∑N

i=1
Xzti ti (3) 

VARt =

∑N

i=1

(
Xti –Xt

)2

(N–1)
(4) 

SKEt =

[
∑N

i=1

(
Xti –Xt

)3
]/

(N–1)

σt
3 (5) 

KURt =

[
∑N

i=1

(
Xti –Xt

)4
]/

(N–1)

σt
4 (6) 

ENTt = –
∑N

i=1
p
(
Xti

)
log2p

(
Xti

)
(7) 

Fig. 2. Ultrasound image acquisition device: Computer (A), oscilloscope (B), generator-receiver (C), ultrasonic transducers (D), food sample (E) and digital 
caliper (F).
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Where Xt is the ultrasound signal in the time-domain, Xzt corre
sponded with the positive values of Xt, X‾t is the mean of each ultra
sound signal in the time-domain, N is the number of elements of each Xt, 
t is the vector which registered the ultrasound signal’s traveling time 
(μs), σt the standard deviation of each ultrasound signal in time-domain 
and p(Xti) is the probability of the occurrence of the i-th amplitude value 
in the discretized time-domain ultrasound signal. To assess the Ve (Eq. 
8), the time of flight (TOF, μs) was firstly calculated by using Eq. 9
following the energy threshold method (ETM) described by Garcia-Perez 
et al. (2019). 

Vel =
L

TOF
(8) 

TOF =
(TOA − Tr)

ae
(9) 

Where L (m) is the thickness in the measurement point; TOA, the 
arrival time (points) of the ultrasonic signal; Tr, the trigger location 
(points) and ae (100 Mpoints/s) the acquisition speed.

2.5.2. Frequency domain analysis
The Fast Fourier Transform (FFT) was applied on the time-domain 

ultrasound signals to obtain the ultrasound frequency spectrum (phs, 
computed via “fft”, MATLAB function, Eq. 10). From phs, the following 
energy related ultrasound parameters in the frequency domain were 
computed. Zero-order moment (M0, MHz, Eq. 11) corresponded with the 
integral of the area under the curve of the phs (Garcia-Perez et al., 
2019). The first-order moment (M1, MHz) was calculated using Eq. 12, 
while the ratio M0/M1 computes the center frequency (Fr) of the phs (Eq. 
13). Additionally, the maximum peak of the frequency spectrum (MP, 
Eq. 14) was also considered. As in section 2.5.1, the spectral-variance 
(VARsp, Eq. 15), spectral-skewness (SKEsp, Eq. 16), spectral-kurtosis 
(KURsp, Eq. 17) and spectral-entropy (ENTsp, Eq. 18) were also deter
mined (Caesarendra & Tjahjowidodo, 2017). 

phs = |FFT| (10) 

M0 =
∑N=fFFT

f=1

phs(f) Δf (11) 

M1 =
∑N=fFFT

f=1
phs(f) frΔf (12) 

Fr =
M1

M0
(13) 

MP = max(phs) (14) 

VARsp =

∑N

i=1
(phsi–phs)2

(N–1)
(15) 

SKEsp =

[
∑N

i=1
(phsi–phs)3

]/

(N − 1)

σsp
3 (16) 

KURsp =

[
∑N

i=1
(phsi–phs)4

]/

(N − 1)

σsp
4 (17) 

ENTsp = –
∑N

i=1
p(phsi)log2p(phsi) (18) 

Where f is the vector of spectral frequencies (MHz), fFFT is the 
maximal frequency obtained by using the FFT, r represents the order of 
the moment, phs is the mean of each phs, σsp the standard deviation of 

each phs and p(phsi) is the probability of the occurrence of the i-th value 
in the discretized phs.

2.5.3. Statistical analysis
In order to assess the influence of BF size/type and their location 

within chicken breast fillets on the time and the frequency domain ul
trasound parameters, a multifactor analysis of variance (ANOVA) was 
considered. The mean pairwise comparisons were performed by using 
Fisher’s Least Significant Difference (LSD) test with a 95 % confidence 
interval. Further, an ANOVA test based on L values was also performed 
to examine whether the inserted BFs affected the thickness of measured 
samples.

2.6. Multivariate image analysis

In order to assess the feasibility of using the USI to detect BF, three 
different approaches were proposed i) time-domain (TDA), frequency- 
domain (FDA) and combined time-frequency domain (TFDA). TDA 
approach used all the parameters computed in the time-domain (PP, 
ENG, INT, Ve, VARt, SKEt, KURt and ENTt), while FDA used the ones in 
the frequency-domain (M0, Fr, MP, VARsp, SKEsp, KURsp and ENTsp). 
Additionally, in order to determine the influence of the number of im
ages used to detect the BF, four different datasets were used considering 
100 %, 75 %, 50 % and 25 % of the experimental data (81 control and 81 
OC images, equal to 162 images). In all data sets, the number of control 
and OC images were the same. Thus, TDA using 50 % of experimental 
data set consisted of 40 control and 40 OC images, both with dimensions 
of i = 5 (number of points on the X axis) × j = 5 (number of points on the 
Y axis) × k = 8 (number of parameters computed in the time-domain). In 
FDA and TFDA, k dimensions were 7 and 15 (8 + 7), respectively. To 
improve the speed of analysis, each image was unfolded as a charac
teristic vector (Achata et al., 2018). Thereby, each image was reshaped 
as a vector of i × j × k. As an example, one image in TDA (i = 5 × j = 5 ×
k = 8) was rearranged from a 3D-matrix to a 1D-row vector of dimension 
200. In each approach and dataset, the MIA procedure was followed 
according to reported by Colucci et al. (2019) and Verdú et al. (2025). 
The PCA model was employed to extract the latent eigenspace of 
unfolded control images (without BF). For this purpose, control data sets 
were randomly split into a segment of 90 % of experimental data for 
model calibration (Ccal). The remaining samples, not included in model 
training, comprised 10 % of the control data (8 samples) and all OC 
images (81), which were reserved for external validation. This valida
tion aimed to assess the feasibility of the calibrated PCA model in 
detecting BF (Reis, 2015). External validation is the gold standard in 
both supervised and unsupervised data analytics, ensuring generaliz
ability and enhancing confidence in the results (Palacio-Niño & Berzal, 
2019). Therefore, for industrial implementation, a larger validation set 
is recommended to ensure the reliable detection of food contaminants 
(McGrath et al., 2018; Ten-Doménech et al., 2023).

Firstly, the segment of data for PCA calibration was mean-centered 
and scaled to have unit variance. The PCA model used the Singular 
Value Decomposition (SVD) algorithm to extract the orthogonal latent 
eigenspace by compressing the image information into a LVs. During the 
scaling process, both the mean and standard deviation vectors obtained 
from scaling process were saved as PCA control coordinates. Further
more, the external validation dataset was scaled using the control co
ordinates and then projected onto the latent space by using the loadings 
from the control model. The residual sum of squares (RSS) and the 
Hotelling’s T-squared (T2) multivariate control statistics were 
computed. The control limit (CL) of both RSS and T2 were calculated 
from the values of control images by percentile method considering 90 
%, 95 %, 97.5 % and 99 %. Additionally, a limit augmentation (LA) of 0 
%, 50 %, 75 % and 100 % was used to increase the decision boundary of 
computed control limits (Sinisterra-Solís et al., 2024) for exploring its 
influence in the classification of control and OC images.
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2.7. Classification performance and statistical validation

The capability of PCA in the detection of BFs was assessed from 1 LV 
to the maximal number of LVs in each approach and dataset. Both 
multivariate control statistics (RSS and T2) served as the basis to 
quantify the classification performance of the models by the confusion 
matrix (CFM, Eq. 19). In this way, the sum of control images from 
calibration and internal validation dataset with values of RSS and T2 into 
the LA-CL indicated true negatives (TN) and if they exceeded the LA-CL, 
indicated false positives (FP). Regarding the OC images, true positives 
(TP) involved the OC images which exceeded the LA-CL and were 
correctly detected. OC images that do not exceed the LA-CL were 
considered as false negatives (FN). The goodness of classification of each 
multivariate statistic was assessed by computing figures of merits such 
as the overall accuracy (Acc, Eq. 20), sensibility (Se, Eq. 21) and speci
ficity (Sp, Eq. 22) (Craig et al., 2018). 

CFM = Predicted

Real
⎡

⎢
⎢
⎣

OC UC

OC TP FP

UC FN TN

⎤

⎥
⎥
⎦

(19) 

Acc(%) =
TP + TN

TP + TN + FP + FN
*100 (20) 

Se =
TP

TP + FN
(21) 

Sp =
TN

TN + FP
(22) 

In order to optimize the PCA model based on RSS and T2, a multi- 
objective optimization problem was formulated. The objective func
tion aimed to determine the number of LVs (optimal number of principal 
components, OPCs) of the PCA model maximizing both the Se and Sp 
simultaneously. Thus, the surface response methodology (SRM) and 
desirability function (De) were employed (Kumar et al., 2019; Yolmeh & 
Jafari, 2017). The optimization processes were carried out using the 
“fmincon” MATLAB function. All calculations were repeated 100 times 
to estimate the influence of considering different random partitions of 
the control matrices to calibrate the PCA model and its influence on the 
detection of BF. For the selection of the number of LVs of the optimized 

PCA model in each approach, maximizing the classification perfor
mance, a multifactor ANOVA considering the random data partition (as 
block factor), the CL and their LA and the goodness of classification 
metrics as responses (Acc, Se, and Sp) was carried out. All multifactor 
ANOVA (sections 2.6 and 2.8) were subjected to residual validation 
(Marques et al., 2020) using different tests on the residuals to assess 
normality (Shapiro-Wilk’s test and q-q plot), independence (Ljung-Box’s 
test), and homoscedasticity (multiple linear regression-MLR on square 
residuals). Hypothesis tests and fulfillment of statistical assumptions 
were assessed at a confidence level of 95 %. The statistical analysis was 
conducted using STATGRAPHICS Centurion XVIII (Manugistics, Inc., 
Rockville, MD, USA).

3. Results and discussion

3.1. Influence of BF on the ultrasound signals in time and frequency 
domains

Figs. 3A-3B and 4A-4B-4C show time-domain US signals from the 
center point (point 13, Fig. 1G) and control (3C) and OC USI (3D-3E, 4D- 
4E-4F) of chicken breast fillets wherein the different BFs were inserted. 
Meanwhile, Fig. 5 depicts the phs of control and OC signals also obtained 
from the center point. A consistent trend was observed in all cases: the 
BF presence disturbed the time-domain control ultrasound signals and 
the control frequency-domain spectra. In the case of time-domain, BF of 
2.0 × 1.5 cm (Fig. 3A) and 2.0 × 1.0 cm (Fig. 3B) promoted an important 
decrease in signal amplitude. Moreover, the BF presence led to a pro
nounced reduction in the maximum peak of the phs (for 2.0 × 1.5 cm, 
Fig. 5A, and 2.0 × 1.0 cm, Fig. 5B). For BF of 1.5 × 0.3 cm (Fig. 4A-5C), 
1.0 × 0.3 cm (Fig. 4B-5D), and 0.5 × 0.3 cm (Fig. 4C-5E), the influence 
of the BFs led to less pronounced drops in the maximum amplitude of 
time and frequency-domain signals compared to the samples containing 
larger size foreign bodies sizes (Correia et al., 2008). Additionally, 
control USI (Fig. 3C) and all the pixels OC images (control pixels), except 
point 13, evidenced PP values between 2.8 and 4 V (color bar from or
ange to yellow), meanwhile for pixels of point 13 in OC images (Fig. 3D-
3E and Fig. 4C-4D-4E), PP values ranged between 2 (red) to 0.5 (dark 
red).

Ultrasound waves are partially scattered, reflected, and transmitted 
when they are passing through materials with different acoustic im
pedances (defined as the product of density and velocity), which results 
in energy attenuation. The attenuation level will be dependent on the 

Fig. 3. Ultrasound signals and example of PP (peak-to-peak) images in chicken breast fillets with bone fragments of size 2.0 × 1.5 cm (A, D) and size of 2.0 × 1.0 cm 
(B, E) placed on its center and control image (C).
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impedance mismatch in the food-foreign bodies interface and the 
foreign bodies size (Cho & Irudayaraj, 2003). Foreign bodies with gas- 
filled structures are likely to cause greater energy attenuation due to 
the significant acoustic impedance mismatch between the gas and the 
surrounding material (Fariñas, Sanchez-Torres, et al., 2021). Foreign 
bodies may also cause wave velocity modifications, which will be 
dependent on the ratios of velocity and thickness between the foreign 
bodies and the food material (Fariñas et al., 2023).

In order to statistically analyze the abovementioned attenuation ef
fects of BFs within chicken breast samples, a multifactor ANOVA 
examining the influence of BF size and their location inside the samples, 
on the energy-related ultrasound parameters computed in the time- 

frequency domain and ultrasound velocity (section 2.5), was carried 
out (Tables 1 to 4). Further, the results of the multifactor ANOVA 
assessed on the L are also shown in Table 1. A statistically significant (p 
< 0.05) effect of the BF size was found on the time and frequency 
domain ultrasound parameters (Tables 1 to 4). Conversely, the location 
of the BF did not significantly (p > 0.05) affect the ultrasonic parame
ters, which shows the robustness of the technique to measure the pres
ence of bones of different sizes, regardless of their location. Moreover, 
the non-statistically significant (p > 0.05) effect of BF size or location 
was found on L (Table 1), which demonstrates that the incorporation of 
BFs of varying sizes, in different locations, had no impact on the final 
thickness of the sample, which could have altered the ultrasonic 

Fig. 4. Ultrasound signals and example of PP (peak-to-peak) images in chicken breast fillets with bone fragments of size 1.5 × 0.3 cm (A, D), size of 1.0 × 0.3 cm (B, 
E) and size of 0.5 × 0.3 cm (C, F) placed on its center.

Fig. 5. Example of the frequency spectrum of chicken breast samples with and without bone fragments. Bone fragments of size 2.0 × 1.5 cm (A), size of 2.0 × 1.0 cm 
(B), size 1.5 × 0.3 cm (C), size of 1.0 × 0.3 cm (D) and size of 0.5 × 0.3 cm (E).
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Table 1 
Ultrasound parameters computed in the time-domain (energy-magnitude 
related and velocity) and thickness for each bone size and location within the 
sample. Multifactor ANOVA homogeneous groups.

Position: center (point 13 of the matrix)

Type PP (V) ENG (V2) INT (V μs) Ve (m/s) L (m)

Control 3.8 ±
0.1aA

424.5 ±
3.9aA

204.9 ±
3.5aA

1547.8 ±
11.6aA

0.014 ±
0.002aA

2.0 × 1.5 
cm

0.7 ±
0.1bA

11.5 ±
2.3bA

31.0 ±
2.8bA

1433.8 ±
13.0bA

0.016 ±
0.001aA

2.0 × 1.0 
cm

0.8 ±
0.1bA

6.9 ±
2.8bA

30.6 ±
1.9bA

1444.9 ±
13.2bA

0.016 ±
0.002aA

1.5 × 0.3 
cm

1.1 ±
0.2cA

60.8 ±
2.4cA

66.7 ±
3.6cA

1551.2 ±
7.2aA

0.015 ±
0.001aA

1.0 × 0.3 
cm

1.5 ±
0.1dA

59.7 ±
1.8cA

84.4 ±
3.8dA

1552.6 ±
9.1aA

0.016 ±
0.001aA

0.5 × 0.3 
cm

1.8 ±
0.2eA

123.2 ±
2.2dA

110.1 ±
2.3eA

1545.9 ±
11.1aA

0.015 ±
0.002aA

Position: top-left (point 7 of the matrix)

Control 3.8 ±
0.1aA

425.9 ±
2.6aA

202.9 ±
1.9 aA

1555.2 ±
11.3aA

0.015 ±
0.001aA

2.0 × 1.5 
cm

0.6 ±
0.1bA

8.0 ±
3.8bA

31.9 ±
2.9bA

1444.2 ±
11.7bA

0.016 ±
0.001aA

2.0 × 1.0 
cm

0.7 ±
0.1bA

9.6 ±
0.5bA

31.0 ±
2.1bA

1445.5 ±
17.0bA

0.015 ±
0.002aA

1.5 × 0.3 
cm

0.9 ±
0.1cA

59.9 ±
3.2cA

67.6 ±
7.1cA

1548.4 ±
12.0aA

0.014 ±
0.002aA

1.0 × 0.3 
cm

1.5 ±
0.2dA

58.9 ±
3.7cA

84.4 ±
2.6dA

1549.0 ±
12.9aA

0.016 ±
0.001aA

0.5 × 0.3 
cm

1.8 ±
0.2eA

120.5 ±
3.4dA

112.5 ±
3.0eA

1536.2 ±
11.1aA

0.015 ±
0.002aA

Position: bottom-left (point 17 of the matrix)

Control
3.8 ±
0.2aA

424.2 ±
2.8aA

205.6 ±
2.1aA

1546.1 ±
9.5aA

0.017 ±
0.002aA

2.0 × 1.5 
cm

0.6 ±
0.2bA

11.3 ±
1.3bA

31.1 ±
4.0bA

1450.4 ±
10.3bA

0.016 ±
0.001aA

2.0 × 1.0 
cm

0.7 ±
0.1bA

10.9 ±
1.5bA

30.3 ±
2.8bA

1459.0 ±
9.5bA

0.015 ±
0.002aA

1.5 × 0.3 
cm

1.1 ±
0.1cA

59.4 ±
3.3cA

68.1 ±
3.0cA

1534.2 ±
9.0aA

0.014 ±
0.002aA

1.0 × 0.3 
cm

1.6 ±
0.1dA

58.3 ±
4.1cA

82.3 ±
2.5dA

1538.1 ±
13.5aA

0.016 ±
0.001aA

0.5 × 0.3 
cm

1.9 ±
0.2eA

117.1 ±
2.2dA

113.4 ±
2.2eA

1549.9 ±
11.7aA

0.015 ±
0.002aA

Position: top-right (point 9 of the matrix)

Control 3.7 ±
0.2aA

427.6 ±
2.9aA

203.3 ±
3.3aA

1551.6 ±
11.2aA

0.014 ±
0.001aA

2.0 × 1.5 
cm

0.7 ±
0.1bA

12.5 ±
2.3bA

31.9 ±
4.2bA

1446.5 ±
7.0bA

0.016 ±
0.001aA

2.0 × 1.0 
cm

0.7 ±
0.1bA

11.4 ±
1.6bA

28.1 ±
4.7bA

1456.4 ±
7.6bA

0.016 ±
0.001aA

1.5 × 0.3 
cm

1.0 ±
0.1cA

57.9 ±
2.5cA

68.0 ±
5.2cA

1543.4 ±
8.6aA

0.016 ±
0.001aA

1.0 × 0.3 
cm

1.5 ±
0.1dA

59.6 ±
4.0cA

85.3 ±
3.1dA

1544.8 ±
10.5aA

0.016 ±
0.001aA

0.5 × 0.3 
cm

1.8 ±
0.2eA

117.2 ±
1.9dA

114.3 ±
3.1eA

1547.1 ±
8.0aA

0.016 ±
0.001aA

Position: bottom-right (point 19 of the matrix)

Control 3.7 ±
0.2aA

429.2 ±
2.2aA

202.3 ±
2.1aA

1548.2 ±
8.1aA

0.015 ±
0.002aA

2.0 × 1.5 
cm

0.6 ±
0.1bA

11.5 ±
2.4bA

29.8 ±
2.4bA

1434.0 ±
10.6bA

0.016 ±
0.002aA

2.0 × 1.0 
cm

0.7 ±
0.2bA

11.5 ±
1.3bA

30.2 ±
2.6bA

1437.4 ±
11.0bA

0.014 ±
0.002aA

1.5 × 0.3 
cm

1.0 ±
0.1cA

57.1 ±
3.4cA

67.9 ±
4.6cA

1540.1 ±
11.3aA

0.016 ±
0.001aA

1.0 × 0.3 
cm

1.5 ±
0.2dA

57.8 ±
2.8cA

86.4 ±
4.6dA

1540.7 ±
12.1aA

0.015 ±
0.002aA

0.5 × 0.3 
cm

1.9 ±
0.1eA

123.3 ±
2.3dA

114.6 ±
2.6eA

1549.2 ±
8.0aA

0.016 ±
0.001aA

PP (peak-to-peak), ENG (energy), INT (integral), Ve (ultrasound velocity), and L 
(thickness). Results are expressed as mean ± standard error. Different lowercase 
letters indicate statistically significant differences (95 %) for each ultrasound 
parameter as a function of the size of bone fragments. Uppercase letters indicate 
statistically significant differences (95 %) for the location of these bone pieces 
within the chicken breast.

Table 2 
Ultrasound parameters computed in the time-domain (energy-distribution) for 
each bone size and location within the sample. Multifactor ANOVA homoge
neous groups.

Position: center (point 13 of the matrix)

Type VARt (V2) SKEt KURt ENTt

Control 0.34 ± 6 × 10–3aA − 0.11 ± 9 ×
10–3aA

8.92 ±
0.06aA

3.3 ±
0.1aA

2.0 × 1.5 
cm

7 × 10− 3 ± 1 ×
10–3bA

0.10 ± 7 ×
10–3bA

8.03 ±
0.07bA

2.1 ±
0.1bA

2.0 × 1.0 
cm

8 × 10− 3 ± 1 ×
10–3bA

0.11 ± 8 ×
10–3bA

8.12 ±
0.06bA

2.1 ±
0.1bA

1.5 × 0.3 
cm

0.04 ± 6 × 10–3cA − 0.03 ± 8 ×
10–3cA

8.21 ±
0.07cA

2.4 ±
0.1cA

1.0 × 0.3 
cm

0.07 ± 3 × 10–3dA − 0.03 ± 8 ×
10–3cA

8.30 ±
0.07dA

2.6 ±
0.2dA

0.5 × 0.3 
cm

0.10 ± 6 × 10–3eA − 0.06 ± 6 ×
10–3dA

8.52 ±
0.07eA

2.7 ±
0.1eA

Position: top-left (point 7 of the matrix)

Control 0.34 ± 8 × 10–3aA − 0.12 ± 6 ×
10–3aA

8.84 ±
0.06aA

3.3 ±
0.1aA

2.0 × 1.5 
cm

7 × 10− 3 ± 2 ×
10–3bA

0.10 ± 8 ×
10–3bA

8.06 ±
0.06bA

2.1 ±
0.1bA

2.0 × 1.0 
cm

9 × 10− 3 ± 1 ×
10–3bA

0.10 ± 7 ×
10–3bA

8.06 ±
0.06bA

2.1 ±
0.1bA

1.5 × 0.3 
cm 0.04 ± 8 × 10–3cA − 0.03 ± 5 ×

10–3cA
8.19 ±
0.05cA

2.4 ±
0.1cA

1.0 × 0.3 
cm

0.08 ± 2 × 10–3dA − 0.03 ± 6 ×
10–3cA

8.29 ±
0.08dA

2.6 ±
0.1dA

0.5 × 0.3 
cm

0.10 ± 7 × 10–3eA − 0.07 ± 8 ×
10–3dA

8.55 ±
0.07eA

2.7 ±
0.1eA

Position: bottom-left (point 17 of the matrix)

Control 0.34 ± 7 × 10–3aA − 0.11 ± 6 ×
10–3aA

8.87 ±
0.05aA

3.2 ±
0.1aA

2.0 × 1.5 
cm

7 × 10− 3 ± 1 ×
10–3bA

0.10 ± 7 ×
10–3bA

8.08 ±
0.06bA

2.1 ±
0.1bA

2.0 × 1.0 
cm

8 × 10− 3 ± 1 ×
10–3bA

0.10 ± 6 ×
10–3bA

8.05 ±
0.05bA

2.1 ±
0.1bA

1.5 × 0.3 
cm 0.04 ± 6 × 10–3cA − 0.04 ± 7 ×

10–3cA
8.24 ±
0.07cA

2.5 ±
0.1cA

1.0 × 0.3 
cm 0.08 ± 3 × 10–3dA − 0.05 ± 6 ×

10–3cA
8.33 ±
0.06dA

2.6 ±
0.1dA

0.5 × 0.3 
cm

0.10 ± 7 × 10–3eA − 0.07 ± 6 ×
10–3dA

8.56 ±
0.06eA

2.7 ±
0.1eA

Position: top-right (point 9 of the matrix)

Control 0.33 ± 5 × 10–3aA − 0.11 ± 8 ×
10–3aA

8.92 ±
0.08aA

3.2 ±
0.1aA

2.0 × 1.5 
cm

7 × 10− 3 ± 1 ×
10–3bA

0.10 ± 7 ×
10–3bA

8.06 ±
0.07bA

2.1 ±
0.1bA

2.0 × 1.0 
cm

8 × 10− 3 ± 1 ×
10–3bA

0.10 ± 7 ×
10–3bA

8.14 ±
0.08bA

2.2 ±
0.1bA

1.5 × 0.3 
cm

0.04 ± 5 × 10–3cA − 0.03 ± 5 ×
10–3cA

8.23 ±
0.07cA

2.4 ±
0.1cA

1.0 × 0.3 
cm 0.08 ± 4 × 10–3dA − 0.03 ± 5 ×

10–3cA
8.32 ±
0.07dA

2.6 ±
0.1dA

0.5 × 0.3 
cm 0.10 ± 8 × 10–3eA − 0.06 ± 5 ×

10–3dA
8.54 ±
0.05eA

2.7 ±
0.1eA

Position: bottom-right (point 19 of the matrix)

Control 0.34 ± 8 × 10–3aA − 0.11 ± 8 ×
10–3aA

8.91 ±
0.05aA

3.2 ±
0.1aA

2.0 × 1.5 
cm

7 × 10− 3 ± 1 ×
10–3bA

0.10 ± 8 ×
10–3bA

8.07 ±
0.07bA

2.1 ±
0.1bA

2.0 × 1.0 
cm

8 × 10− 3 ± 1 ×
10–3bA

0.11 ± 6 ×
10–3bA

8.16 ±
0.05bA

2.1 ±
0.1bA

1.5 × 0.3 
cm 0.04 ± 4 × 10–3cA − 0.03 ± 5 ×

10–3cA
8.21 ±
0.06cA

2.4 ±
0.1cA

1.0 × 0.3 
cm

0.07 ± 3 × 10–3dA − 0.03 ± 6 ×
10–3cA

8.33 ±
0.06dA

2.5 ±
0.1dA

0.5 × 0.3 
cm

0.10 ± 7 × 10–3eA − 0.07 ± 5 ×
10–3dA

8.54 ±
0.06eA

2.7 ±
0.1eA

VARt (variance in time-domain), SKEt (skewness in time-domain), KURt (kur
tosis in time-domain) and ENTt (entropy in time-domain). Results are expressed 
as mean ± standard error. Different lowercase letters indicate statistically sig
nificant differences (95 %) for each ultrasound parameter as a function of the 
size of bone fragments. Uppercase letters indicate statistically significant dif
ferences (95 %) for the location of these bone pieces within the chicken breast.
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measurements.
By using the average values of PP, ENG and INT computed from time- 

domain (Table 1), it was possible to sort the samples from the lowest to 
the highest energy level in five homogeneous groups (LSD intervals (p <
0.05) from ANOVA), as follows: control (3.8 V, 424.5 V2 and 204.9 V μs) 
> 0.5 × 0.3 cm (1.8 V, 123.2 V2 and 110.1 V μs) > 1.0 × 0.3 cm (1.5 V, 
59.7 V2 and 84.4 V μs) > 1.5 × 0.3 cm (1.1 V, 60.8 V2 and 66.7 V μs), 2.0 
× 1.0 cm (0.8 V, 6.9 V2 and 30.6 V μs) > 2.0 × 1.5 cm (0.7 V, 11.5 V2 and 
31 V μs). Thus, the larger the BF, the lower the energy level and then, the 
larger the attenuation. In addition, the statistical results for Ve indicated 
that there were no significant differences (p > 0.05) in the speed of 
ultrasound waves between the control group and BFs of sizes 1.5 × 0.3 
cm, 1.0 × 0.3 cm, and 0.5 × 0.3 cm. However, a noticeable decrease in 
the ultrasound velocity was found for the largest BF sizes (2.0 × 1.5 cm 
and 2.0 × 1.0 cm, Table 1). These results suggest that for small bones the 
wave front (used to calculate velocity) travels only through the meat 
flesh (where velocity is higher) and therefore velocity is not altered, 
compared to the control sample. However, when the bone size is larger, 
the wave front has traveled through the bone (with lower ultrasound 
velocity than flesh) and therefore ultrasonic velocity decreases. Similar 
results were reported by Correia et al. (2008) in the detection of BFs of 
different sizes (large size = 15.75 mm2, medium size = 9.92 mm2 and 
small size = 6.18 mm2) inserted in skinless chicken breasts by using a 
single point-measurement using pulse-eco ultrasound technology. These 

authors quantified the influence of these BFs on both the amplitude ratio 
and Ve. They found that the presence of BF led to a statistically signifi
cant (p < 0.05) increase in ultrasonic attenuation, while non statistical 
differences (p > 0.05) were found in Ve. This study reported Ve values of 
1564 ± 2 m/s for chicken breast samples, similar to the values of the 
present work (Table 1). Although Correia et al. (2008) claimed that the 
Ve could not be used to detect the presence of BFs, the results of the 
present work illustrate that the largest BFs, which were obtained from 
other parts of the chicken skeleton such as vertebra (2.0 × 1.5 cm, 
Fig. 1E i) and chest (2.0 × 1.0 cm, Fig. 1E ii), were detected by using Ve.

The presence of BF also influenced the energy-distribution parame
ters calculated from time-domain (VARt, SKEt, KURt and ENTt, Table 2). 
Larger BF led to a decrease in the dispersion of the ultrasound waves 
(VARt), left-skewed the time-domain signals (positive SKEt values), 
reduced the tailedness (KURt) and the randomness (ENTt). Thus, a 
noticeable trend was observed from the energy time-domain distribu
tion, the larger the BFs, the most pronounced changes in the energy- 
distribution of the ultrasound signals waves.

As regard of the energy-magnitude related variables computed in the 
frequency-domain (M0, Fr and MP, Table 3), the BF presence within 
chicken breast samples significantly (p < 0.05) reduced M0 and MP 
(Fig. 5) and also modified the center-frequency of phs (Fr). Multifactor 
ANOVA of M0 and MP, showed three independent groups clustered from 
LSD intervals: i) Control ii) BF of 1.5 × 0.3 cm, 1.0 × 0.3 cm and 0.5 ×

Table 3 
Ultrasound parameters computed in the frequency-domain (energy-magnitude 
related) for each bone size and location within the sample. Multifactor ANOVA 
homogeneous groups.

Position: center (point 13 of the matrix)

Type M0 (MHz) Fr MP

Control 2177.8 ± 64.6aA 1.00 ± 0.01aA 296.2 ± 16.9aA

2.0 × 1.5 cm 396.1 ± 64.6bA 1.02 ± 0.01bA 42.7 ± 3.7bA

2.0 × 1.0 cm 333.7 ± 59.4bA 1.03 ± 0.01bcA 43.1 ± 5.7bA

1.5 × 0.3 cm 770.1 ± 62.9cA 1.03 ± 0.02bcA 89.8 ± 6.7cA

1.0 × 0.3 cm 787.5 ± 73.5cA 1.02 ± 0.01bcA 98.0 ± 6.6cA

0.5 × 0.3 cm 827.7 ± 62.4cA 1.03 ± 0.01cA 103.4 ± 11.3cA

Position: top-left (point 7 of the matrix)
Control 2094.8 ± 65.9aA 1.00 ± 0.01aA 297.0 ± 8.3aA

2.0 × 1.5 cm 354.3 ± 56.3bA 1.02 ± 0.01bA 41.4 ± 5.5bA

2.0 × 1.0 cm 383.0 ± 67.7bA 1.02 ± 0.00bcA 46.7 ± 10.1bA

1.5 × 0.3 cm 791.6 ± 63.4cA 1.02 ± 0.01bcA 89.1 ± 7.5cA

1.0 × 0.3 cm 831.5 ± 65.3cA 1.03 ± 0.01bcA 89.4 ± 10.6cA

0.5 × 0.3 cm 862.9 ± 71.2cA 1.03 ± 0.01cA 94.5 ± 14.5cA

Position: bottom-left (point 17 of the matrix)
Control 2164.4 ± 62.7aA 1.01 ± 0.01aA 294.1 ± 14.0aA

2.0 × 1.5 cm 393.6 ± 49.2bA 1.02 ± 0.01bA 35.5 ± 8.4bA

2.0 × 1.0 cm 395.0 ± 67.6bA 1.02 ± 0.01bcA 46.8 ± 8.1bA

1.5 × 0.3 cm 805.2 ± 68.6cA 1.03 ± 0.01bcA 87.2 ± 14.0cA

1.0 × 0.3 cm 785.8 ± 57.8cA 1.02 ± 0.02bcA 95.2 ± 14.3cA

0.5 × 0.3 cm 851.9 ± 61.2cA 1.03 ± 0.00cA 103.7 ± 11.3cA

Position: top-right (point 9 of the matrix)
Control 2116.5 ± 61.9aA 1.00 ± 0.01aA 295.7 ± 8.1aA

2.0 × 1.5 cm 376.6 ± 54.8bA 1.02 ± 0.01bA 38.9 ± 8.1bA

2.0 × 1.0 cm 379.8 ± 49.2bA 1.03 ± 0.02bcA 47.0 ± 8.4bA

1.5 × 0.3 cm 757.9 ± 67.2cA 1.02 ± 0.02bcA 93.6 ± 8.1cA

1.0 × 0.3 cm 816.1 ± 55.1cA 1.03 ± 0.01bcA 97.9 ± 8.1cA

0.5 × 0.3 cm 835.1 ± 60.7cA 1.03 ± 0.02cA 108.4 ± 8.4cA

Position: bottom-right (point 19 of the matrix)
Control 2057.9 ± 71.7aA 1.00 ± 0.01aA 298.3 ± 2.5aA

2.0 × 1.5 cm 305.9 ± 58.8bA 1.02 ± 0.00bA 33.5 ± 6.4bA

2.0 × 1.0 cm 314.9 ± 58.9bA 1.04 ± 0.01bcA 40.4 ± 4.1bA

1.5 × 0.3 cm 733.9 ± 57.6cA 1.02 ± 0.01bcA 90.7 ± 4.8cA

1.0 × 0.3 cm 782.2 ± 67.7cA 1.03 ± 0.01bcA 92.8 ± 7.3cA

0.5 × 0.3 cm 798.5 ± 67.4cA 1.02 ± 0.01cA 96.5 ± 5.8cA

M0 (zero-order moment), Fr (center frequency), and MP (maximum peak of the 
frequency spectrum). Results are expressed as mean ± standard error. Different 
lowercase letters indicate statistically significant differences (95 %) for each 
ultrasound parameter as a function of the size of bone fragments. Uppercase 
letters indicate statistically significant differences (95 %) for the location of 
these bone pieces within the chicken breast.

Table 4 
Ultrasound parameters computed in the frequency-domain (energy-distribution) 
for each bone size and location within the sample. Multifactor ANOVA homo
geneous groups.

Position: center (point 13 of the matrix)

Type VARsp SKEsp KURsp ENTsp

Control 6782.2 ± 68.2aA 1.45 ± 0.02aA 3.7 ± 0.1aA 0.5 ± 0.1aA

2.0 × 1.5 cm 160.4 ± 42.8bA 1.29 ± 0.07bcA 3.3 ± 0.3bcA 2.8 ± 0.2bA

2.0 × 1.0 cm 166.4 ± 56.8bA 1.36 ± 0.05bA 3.2 ± 0.1bA 2.7 ± 0.2bA

1.5 × 0.3 cm 954.8 ± 75.3cA 1.35 ± 0.17cA 3.5 ± 0.1cA 2.3 ± 0.1cA

1.0 × 0.3 cm 1776.8 ± 88.7dA 1.35 ± 0.06bcA 3.3 ± 0.2bcA 2.3 ± 0.1cA

0.5 × 0.3 cm 1884.7 ± 75.5dA 1.31 ± 0.03bcA 3.2 ± 0.1bcA 2.2 ± 0.1cA

Position: top-left (point 7 of the matrix)
Control 6769.8 ± 69.2aA 1.45 ± 0.03aA 3.7 ± 0.1aA 0.3 ± 0.1aA

2.0 × 1.5 cm 107.1 ± 53.9bA 1.32 ± 0.21bcA 3.4 ± 0.2bcA 2.9 ± 0.1bA

2.0 × 1.0 cm 120.6 ± 42.6bA 1.25 ± 0.2bA 3.1 ± 0.3bA 2.9 ± 0.2bA

1.5 × 0.3 cm 955.3 ± 76.2cA 1.38 ± 0.09cA 3.5 ± 0.3cA 2.4 ± 0.2cA

1.0 × 0.3 cm 1715.3 ± 64.0dA 1.32 ± 0.15bcA 3.3 ± 0.4bcA 2.4 ± 0.1cA

0.5 × 0.3 cm 1895.1 ± 77.7dA 1.38 ± 0.03bcA 3.5 ± 0.1bcA 2.5 ± 0.1cA

Position: bottom-left (point 17 of the matrix)
Control 6776.9 ± 62.2aA 1.43 ± 0.03aA 3.6 ± 0.1aA 0.4 ± 0.1aA

2.0 × 1.5 cm 100.3 ± 45.3bA 1.35 ± 0.11bcA 3.3 ± 0.2bcA 2.9 ± 0.1bA

2.0 × 1.0 cm 129.1 ± 47.1bA 1.36 ± 0.10bA 3.2 ± 0.4bA 2.8 ± 0.1bA

1.5 × 0.3 cm 898.9 ± 69.2cA 1.42 ± 0.02cA 3.3 ± 0.1cA 2.5 ± 0.1cA

1.0 × 0.3 cm 1726.4 ± 58.9dA 1.37 ± 0.12bcA 3.2 ± 0.2bcA 2.4 ± 0.2cA

0.5 × 0.3 cm 1886.2 ± 54.6dA 1.38 ± 0.03bcA 3.3 ± 0.1bcA 2.5 ± 0.2cA

Position: top-right (point 9 of the matrix)
Control 6746.8 ± 77.7aA 1.45 ± 0.03aA 3.7 ± 0.1aA 0.6 ± 0.2aA

2.0 × 1.5 cm 122.6 ± 42.6bA 1.30 ± 0.12bcA 3.2 ± 0.2bcA 3.0 ± 0.2bA

2.0 × 1.0 cm 138.7 ± 56.8bA 1.25 ± 0.12bA 3.1 ± 0.2bA 2.9 ± 0.1bA

1.5 × 0.3 cm 931.0 ± 65.3cA 1.36 ± 0.09cA 3.2 ± 0.1cA 2.4 ± 0.1cA

1.0 × 0.3 cm 1712.3 ± 78.7dA 1.32 ± 0.03bcA 3.2 ± 0.2bcA 2.5 ± 0.1cA

0.5 × 0.3 cm 1890.3 ± 51.9dA 1.34 ± 0.06bcA 3.0 ± 0.2bcA 2.5 ± 0.2cA

Position: bottom-right (point 19 of the matrix)
Control 6795.3 ± 67.6aA 1.45 ± 0.02aA 3.7 ± 0.1aA 0.4 ± 0.2aA

2.0 × 1.5 cm 128.0 ± 38.8bA 1.33 ± 0.08bcA 3.2 ± 0.3bcA 2.9 ± 0.1bA

2.0 × 1.0 cm 141.6 ± 36.8bA 1.28 ± 0.05bA 3.1 ± 0.2bA 3.0 ± 0.1bA

1.5 × 0.3 cm 888.5 ± 40.6cA 1.32 ± 0.05cA 3.2 ± 0.2cA 2.4 ± 0.1cA

1.0 × 0.3 cm 1722.1 ± 59.0dA 1.37 ± 0.10bcA 3.3 ± 0.2bcA 2.4 ± 0.2cA

0.5 × 0.3 cm 1840.2 ± 47.6dA 1.39 ± 0.02bcA 3.7 ± 0.1bcA 2.5 ± 0.2cA

VARsp (spectral-variance), SKEsp (spectral-skewness), KURsp (spectral-kurtosis) 
and ENTsp (spectral-entropy). Results are expressed as mean ± standard error. 
Different lowercase letters indicate statistically significant differences (95 %) for 
each ultrasound parameter as a function of the size of bone fragments. Upper
case letters indicate statistically significant differences (95 %) for the location of 
these bone pieces within the chicken breast.
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0.3 cm iii) BF of 2.0 × 1.5 cm and 2.0 × 1.0 cm. While the results of Fr led 
to also discriminate three groups (Table 3). BF presence also influenced 
the phs energy-distribution. Large BF produced an important decrease in 
the dispersion of phs (VARsp), right-skewed (positive SKEsp values but 
smaller than control), reduced the tailedness and increased the disorder 
in the distribution of energy of phs (ENTsp). Therefore, the frequency- 
domain energy-magnitude and distribution parameters were also 
adequate to detect the presence of BFs in the breasts.

3.2. BF detection using USI and latent-based statistical process control

The statistical results considering the USI for the detection of BFs by 
using the RSS and T2 and the TDA, FDA and TFDA approaches (section 
2.7.1 and 2.8), are summarized in Tables 5 to 8. The modeling results 
(Tables 5, 6 and 7) reported that the average values of Acc ranged be
tween 88.2 and 96.07 %, Se were between 0.88 and 0.96 and Sp varied 
from 0.88 to 0.96, for TDA, FDA and TFDA in all CL of both RSS and T2 

and their LA. This demonstrates the noteworthy performance of this 
approach for detecting BFs using both multivariate control charts (RSS 
and T2) computed in the MIA-based strategy.

The statistical results of multifactor ANOVA models computed from 
TDA, FDA and TFDA revealed significant differences (p < 0.05) in the 
average Acc Se and Sp values of the optimized PCA models by using 

different CL and LA (Tables 5–7). However, for TFDA-T2, the residuals of 
the multifactor ANOVA models performed on Se and Sp did not meet the 
assumptions of normality and homoscedasticity, rendering those 
ANOVA models unsuitable for statistically comparing the PCA-T2 results 
at different CL and LA.

In every case (Tables 5–7), the statistical ANOVA procedures were 
conducted considering the optimized PCA models obtained from the 
multi-objective optimization process (section 2.8) to simultaneously 
maximize both Se and Sp with the lowest number of LVs (Fig. 6). It can be 
seen in Fig. 6 the typical plateau of the classification metrics via RSS 
employing TDA (Acc, Fig. 6A, Se vs Sp, Fig. 6B), FDA (Acc, Fig. 6E, Se vs 
Sp, Fig. 6F) and TFDA (Acc, Fig. 6I, Se vs Sp, Fig. 6J) and for T2 using TDA 
(Acc, Fig. 6C, Se vs Sp, Fig. 6D), FDA (Acc, Fig. 6G, Se vs Sp, Fig. 6H) and 
TFDA (Acc, Fig. 6K, Se vs Sp, Fig. 6L), wherein the multi-objective opti
mization problem found the OPCs in all cases in the point of crossing of 
Se and Sp. The results of TDA (Table 5) showed a great classification 
performance of control and OC USI. Based on the LSD intervals, the 
optimized PCA model using RSS with 17 OPCs, employing LA50%- 
CL90% exhibited high classification performance (Acc = 95.44 %, Se =

0.96 and Sp = 0.95) with the minimum number of LVs. In contrast, the 

Table 5 
Optimized Principal Component models (PCA) and statistical performance of the 
Residual Sum Squares (RSS) and Hotelling’s T-squared (T2) multivariate control 
statistics for detection of bone fragments using time-domain approach (TDA).

TDA-RSS

LA (%) CL (%) OPCs Acc (%) Se Sp

0

90 6 89.00 ± 0.84aA 0.90 ± 0.02aA 0.88 ± 0.02aA

95 8 91.61 ± 0.81aB 0.92 ± 0.01aB 0.91 ± 0.02aB

97.5 12 93.90 ± 0.85aC 0.94 ± 0.02aC 0.94 ± 0.02aC

99 14 94.25 ± 1.04aC 0.94 ± 0.03aC 0.95 ± 0.02aC

50

90 17 95.44 ± 0.90bA 0.96 ± 0.01bA 0.95 ± 0.02bA

95 19 95.49 ± 0.82bA 0.96 ± 0.02bA 0.95 ± 0.02bA

97.5 21 95.75 ± 0.82bA 0.96 ± 0.01bA 0.96 ± 0.02bA

99 23 95.67 ± 0.95bA 0.96 ± 0.01bA 0.96 ± 0.02bA

75

90 20 95.61 ± 0.84bA 0.95 ± 0.01bA 0.96 ± 0.02bA

95 23 95.60 ± 0.83bA 0.96 ± 0.01bA 0.95 ± 0.02bA

97.5 25 95.78 ± 0.81bA 0.96 ± 0.02bA 0.96 ± 0.02bA

99 27 95.90 ± 0.92bB 0.96 ± 0.02bA 0.96 ± 0.02bA

100

90 23 95.72 ± 0.79bA 0.96 ± 0.01bA 0.96 ± 0.02bA

95 25 95.53 ± 0.80bA 0.96 ± 0.02bA 0.96 ± 0.02bA

97.5 26 95.19 ± 0.74bA 0.95 ± 0.02bA 0.96 ± 0.02bA

99 28 95.55 ± 1.05bA 0.95 ± 0.02bA 0.96 ± 0.02bA

TDA-T2

LA (%) CL (%) OPCs Acc (%) Se Sp

0

90 42 88.20 ± 1.10aA 0.88 ± 0.02aA 0.88 ± 0.02aA

95 45 91.40 ± 1.04aB 0.92 ± 0.02aB 0.91 ± 0.02aB

97.5 47 93.38 ± 0.91aC 0.94 ± 0.02aC 0.93 ± 0.02aC

99 48 94.48 ± 1.01aD 0.95 ± 0.02aD 0.94 ± 0.02aC

50

90 54 94.89 ± 0.97bA 0.94 ± 0.02bA 0.95 ± 0.02bA

95 55 95.38 ± 1.01bB 0.96 ± 0.02bA 0.95 ± 0.02bA

97.5 55 95.40 ± 0.99bB 0.96 ± 0.02bA 0.95 ± 0.02bA

99 55 95.38 ± 1.00bB 0.96 ± 0.02bA 0.95 ± 0.02bA

75

90 57 95.20 ± 1.02cA 0.96 ± 0.02bA 0.95 ± 0.02bA

95 57 95.18 ± 1.01cA 0.96 ± 0.02bA 0.95 ± 0.02bA

97.5 57 95.17 ± 1.00cA 0.96 ± 0.02bA 0.95 ± 0.02bA

99 57 95.14 ± 0.99cA 0.96 ± 0.02bA 0.95 ± 0.02bA

100

90 58 94.94 ± 1.00bcA 0.95 ± 0.02bA 0.95 ± 0.02bA

95 58 94.93 ± 1.00bcA 0.94 ± 0.02bA 0.95 ± 0.02bA

97.5 58 94.93 ± 0.99bcA 0.94 ± 0.02bA 0.95 ± 0.02bA

99 58 94.92 ± 0.98bcA 0.94 ± 0.02bA 0.95 ± 0.02bA

TDA (time-domain approach), RSS (Residual Sum Squares), T2 (Hotelling T- 
squared), LA (limit augmentation), CL (control limit), OPCs (optimal number of 
principal components), Acc (overall accuracy), Se (sensibility) and Sp (speci
ficity). Results are expressed as mean ± standard error. Different lowercase 
letters indicate statistically significant differences (95 %) of each goodness of 
classification metric (Acc, Se and Sp) as a function of the LA. Uppercase letters 
indicate statistically significant differences (95 %) of Acc, Se and Sp as a function 
of the computed CL.

Table 6 
Optimized Principal Component models (PCA) and statistical performance of the 
Residual Sum Squares (RSS) and Hotelling’s T-squared (T2) multivariate control 
statistics for detection of bone fragments using frequency-domain approach 
(FDA).

FDA-RSS

LA (%) CL (%) OPCs Acc (%) Se Sp

0

90 6 89.31 ± 1.23aA 0.90 ± 0.04aA 0.88 ± 0.02aA

95 8 91.75 ± 0.84aB 0.92 ± 0.01aA 0.91 ± 0.02aB

97.5 10 93.35 ± 1.13aB 0.93 ± 0.03aA 0.94 ± 0.02aC

99 12 95.40 ± 1.10aC 0.96 ± 0.02aB 0.95 ± 0.02aC

50

90 15 95.44 ± 0.96bA 0.95 ± 0.02bA 0.96 ± 0.02bA

95 17 95.83 ± 
0.98bA

0.96 ± 
0.02bAB

0.96 ± 
0.02bA

97.5 19 95.85 ± 0.95bA 0.96 ± 0.01bB 0.96 ± 0.02bA

99 20 95.63 ± 0.99bA 0.96 ± 0.02bB 0.96 ± 0.02bA

75

90 18 95.84 ± 0.91bA 0.96 ± 0.01bA 0.96 ± 0.02bA

95 20 95.80 ± 0.84bA 0.95 ± 0.02bA 0.96 ± 0.02bA

97.5 21 95.44 ± 0.92bA 0.95 ± 0.02bA 0.96 ± 0.02bA

99 23 95.77 ± 0.81bA 0.96 ± 0.01bA 0.95 ± 0.02bA

100

90 21 95.72 ± 0.84bA 0.96 ± 0.01bA 0.96 ± 0.02bA

95 23 95.93 ± 0.73bA 0.96 ± 0.01bA 0.96 ± 0.02bA

97.5 24 95.74 ± 0.90bA 0.96 ± 0.02bA 0.96 ± 0.02bA

99 25 95.61 ± 0.81bA 0.96 ± 0.02bA 0.96 ± 0.02bA

FDA-T2

LA (%) CL (%) OPCs Acc (%) Se Sp

0

90 41 88.07 ± 1.32aA 0.88 ± 0.03aA 0.88 ± 0.02aA

95 43 91.35 ± 1.36aB 0.91 ± 0.03aB 0.92 ± 0.02aB

97.5 45 93.67 ± 1.17aC 0.94 ± 0.02aC 0.94 ± 0.02aC

99 46 94.94 ± 0.92aD 0.95 ± 0.02aC 0.95 ± 0.02aC

50

90 55 95.49 ± 0.88bA 0.96 ± 0.02bA 0.95 ± 0.02bA

95 55
95.44 ± 
0.85bA 0.95 ± 0.02bA 0.95 ± 

0.02bA

97.5 55 95.44 ± 0.84bA 0.95 ± 0.02bA 0.95 ± 0.02bA

99 55 95.41 ± 0.83bA 0.95 ± 0.02bA 0.95 ± 0.02bA

75

90 57 95.30 ± 0.90bA 0.95 ± 0.02bA 0.95 ± 0.02bA

95 57 95.25 ± 0.91bA 0.95 ± 0.02bA 0.95 ± 0.02bA

97.5 57 95.25 ± 0.91bA 0.95 ± 0.02bA 0.95 ± 0.02bA

99 57 95.24 ± 0.91bA 0.95 ± 0.02bA 0.95 ± 0.02bA

100

90 59 95.29 ± 0.96bA 0.95 ± 0.02bA 0.95 ± 0.02bA

95 59 95.30 ± 0.96bA 0.95 ± 0.02bA 0.95 ± 0.02bA

97.5 59 95.30 ± 0.96bA 0.95 ± 0.02bA 0.95 ± 0.02bA

99 59 95.30 ± 0.96bA 0.95 ± 0.02bA 0.95 ± 0.02bA

FDA (frequency-domain approach), RSS (Residual Sum Squares), T2 (Hotelling 
T-squared), LA (limit augmentation), CL (control limit), OPCs (optimal number 
of principal components), Acc (overall accuracy), Se (sensibility) and Sp (speci
ficity). Results are expressed as mean ± standard error. Different lowercase 
letters indicate statistically significant differences (95 %) of each goodness of 
classification metric (Acc, Se and Sp) as a function of the LA. Uppercase letters 
indicate statistically significant differences (95 %) of Acc, Se and Sp as a function 
of the computed CL.
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optimized PCA model using T2 required more LVs (OPCs = 55), main
taining the LA50%-CL95 % to achieve similar classification performance 
to RSS. Closely, the statistical results of FDA (Table 6) exhibited quite 
similar behavior of TDA, the optimized PCA using RSS with 17 LVs and 
LA50%-CL95 % showed an Acc = 95.85 %, Se = 0.96 and Sp = 0.96 and 
T2 control statistic reached an Acc = 95.44 %, Se = 0.95 and Sp = 0.95 
using 55 LVs and the same LA and CL of RSS.

As expected, the classification results for TDA and FDA were closely 
aligned by using both RSS and T2 (Tables 5 and 6). This result could be 
attributed to the fact that the presence of BFs produced an important 
attenuation of the ultrasound energy (Suen et al., 2016). Therefore, the 
PCA model-based RSS and T2 were able to satisfactorily detect BF by 
using both energy-magnitude and energy distribution parameters from 
the time and frequency domains (as explained in section 3.1). The 
detection via RSS suggested that the BF presence led to a detectable 
breakage in the correlation structure of the control model and T2 indi
cated extreme values (lower energy related and magnitude values of 
ultrasound parameters) in these images compared to the control ones 
(Kruse et al., 2014). Nevertheless, the RSS statistics were the most robust 
classifier to maximize the goodness of classification of control and OC 

images due to its simplicity in the use of lower number of LVs than the T2 

statistic (17 vs 55 LVs, respectively; Tables 5–6).
The statistical results of the TFDA approach (Table 7) integrating 

TDA and FDA ones, slightly improved the classification performance of 
RSS and did not evidence an important improvement using T2. In this 
regard, when model input variables potentially contribute to describing 
the response, selecting specific input variables can improve model re
sults. Conversely, adding more variables could worsen the model’s ac
curacy (Zhang, 2014). Therefore, the use of TFDA-RSS contributed to 
not only a slight increase in Acc, Se and Sp but also to reduced 2 LVs (15 
OPCs, Table 7, Fig. 6I and J) maintaining the LA50%-CL95 %. While, in 
the case of T2, the combination of TDA and FDA in the same framework 
to feed the PCA model caused redundance (features which have 
explained the same extreme values) and promoted the use of more LVs 
(Fig. 6K and L). This result suggested that the combination of both 
energy-related and energy-magnitude ultrasound parameters computed 
in the time and frequency domains made the PCA model more robust for 
the detection of any disturbance in the correlation structure not only 
between the variables referred with the energy and distribution in time 
and frequency domains but also the relationship between both spaces, 

Table 7 
Optimized Principal Component models (PCA) and statistical performance of the 
Residual Sum Squares (RSS) and Hotelling’s T-squared (T2) multivariate control 
statistics for detection of bone fragments using time-frequency domain approach 
(TFDA).

TFDA-RSS

LA (%) CL (%) OPCs Acc (%) Se Sp

0

90 6 88.24 ± 1.20aA 0.88 ± 0.03aA 0.89 ± 0.02aA

95 8 93.02 ± 0.65aB 0.94 ± 0.01aB 0.92 ± 0.02aB

97.5 9 94.46 ± 0.86aC 0.95 ± 0.02aC 0.94 ± 0.02aC

99 11 95.42 ± 0.96aC 0.95 ± 0.02aC 0.95 ± 0.02aC

50

90 15 96.07 ± 0.86bA 0.96 ± 0.01bA 0.96 ± 0.02bA

95 16 96.03 ± 0.85bA 0.96 ± 0.01bA 0.96 ± 0.02bA

97.5 19 95.88 ± 0.81bA 0.96 ± 0.01bA 0.96 ± 0.02bA

99 20 95.81 ± 0.81bA 0.96 ± 0.01bA 0.96 ± 0.02bA

75

90 19 95.81 ± 0.78bA 0.96 ± 0.01bA 0.96 ± 0.02bA

95 21 95.80 ± 0.87bA 0.96 ± 0.01bA 0.96 ± 0.02bA

97.5 22 95.77 ± 0.91bA 0.96 ± 0.01bA 0.96 ± 0.02bA

99 23 95.75 ± 0.84bA 0.96 ± 0.01bA 0.96 ± 0.02bA

100

90 22 95.85 ± 0.80bA 0.96 ± 0.01bA 0.96 ± 0.02bA

95 24 95.70 ± 0.83bA 0.96 ± 0.01bA 0.96 ± 0.02bA

97.5 26 95.70 ± 0.86bA 0.96 ± 0.01bA 0.96 ± 0.02bA

99 28 95.89 ± 0.81bA 0.96 ± 0.01bA 0.96 ± 0.02bA

TFDA-T2

LA (%) CL (%) OPCs Acc (%) Se* Sp*

0

90 47 88.20 ± 1.19aA 0.88 ± 0.03 0.88 ± 0.02
95 50 91.99 ± 0.87aB 0.92 ± 0.02 0.92 ± 0.02
97.5 51 93.57 ± 1.03aC 0.93 ± 0.02 0.94 ± 0.02
99 52 94.23 ± 0.85aC 0.94 ± 0.01 0.94 ± 0.02

50

90 59 94.58 ± 1.01bA 0.93 ± 0.03 0.96 ± 0.03
95 59 94.54 ± 1.03bA 0.93 ± 0.03 0.96 ± 0.03
97.5 59 94.54 ± 1.03bA 0.93 ± 0.03 0.96 ± 0.03
99 59 94.54 ± 1.03bA 0.93 ± 0.03 0.96 ± 0.03

75

90 60 93.09 ± 1.44cC 0.92 ± 0.05 0.94 ± 0.03
95 60 93.09 ± 1.43cC 0.92 ± 0.05 0.94 ± 0.03
97.5 60 93.09 ± 1.43cC 0.92 ± 0.05 0.94 ± 0.03
99 60 93.09 ± 1.43cC 0.92 ± 0.05 0.94 ± 0.03

100

90 61 92.91 ± 2.63cC 0.93 ± 0.08 0.93 ± 0.03
95 61 92.91 ± 2.63cC 0.93 ± 0.08 0.93 ± 0.03
97.5 61 92.91 ± 2.63cC 0.93 ± 0.08 0.93 ± 0.03
99 61 92.91 ± 2.63cC 0.93 ± 0.08 0.93 ± 0.03

TFDA (time-frequency domain approach), RSS (Residual Sum Squares), T2 

(Hotelling T-squared), LA (limit augmentation), CL (control limit), OPCs 
(optimal number of principal components), Acc (overall accuracy), Se (sensibil
ity) and Sp (specificity). Results are expressed as mean ± standard error. 
Different lowercase letters indicate statistically significant differences (95 %) of 
Acc as a function of the LA. Uppercase letters indicate statistically significant 
differences (95 %) of Acc as a function of the computed CL. *The residuals from 
multifactor analysis of variance (ANOVA) models failed to meet the assumptions 
of normality and homoscedasticity, thus rendering both models unsuitable for 
practical inference.

Table 8 
Classification performance of the Residual Sum Squares (RSS) and Hotelling’s T- 
squared (T2) multivariate control statistics in the detection of varying-size bone 
fragments using the time-domain (TDA), frequency-domain (FDA) and time- 
frequency domain (TFDA) approaches.

TDA Number of samples (predicted)

Type Number of samples (real) RSS T2

2.0 × 1.5 cm 15 15 15
2.0 × 1.0 cm 17 17 17
1.5 × 0.3 cm 17 16 16
1.0 × 0.3 cm 15 14 14
0.5 × 0.3 cm 17 15 15
OC 

(all types) 81
TP = 78 ± 1 
FN = 3 ± 1

TP = 78 ± 1 
FN = 3 ± 1

Control 
(Ccal+ CEV)

81
TN = 77 ± 2 
FP = 4 ± 2

TN = 77 ± 2 
FP = 4 ± 2

Ccal 73 TNcal = 71 TNcal = 71
CEV 8 TNIV = 6 TNIV = 6
FDA Number of samples (predicted)
Type Number of samples (real) RSS T2

2.0 × 1.5 cm 15 15 15
2.0 × 1.0 cm 17 17 17
1.5 × 0.3 cm 17 17 16
1.0 × 0.3 cm 15 14 14
0.5 × 0.3 cm 17 15 15
OC 

(all types)
81 TP = 78 ± 1 

FN = 3 ± 1
TP = 77 ± 1 
FN = 4 ± 1

Control 
(Ccal+ CEV) 81

TN = 78 ± 2 
FP = 3 ± 2

TN = 77 ± 2 
FP = 4 ± 2

Ccal 73 TNcal = 72 TNcal = 71
CEV 8 TNIV = 6 TNIV = 6
TFDA Number of samples (predicted)
Type Number of samples (real) RSS T2

2.0 × 1.5 cm 15 15 15
2.0 × 1.0 cm 17 17 17
1.5 × 0.3 cm 17 16 15
1.0 × 0.3 cm 15 14 14
0.5 × 0.3 cm 17 16 15
OC 

(all types)
81 TP = 78 ± 1 

FN = 3 ± 1
TP = 76 ± 2 
FN = 5 ± 2

Control 
(Ccal+ CEV)

81 TN = 78 ± 1 
FP = 3 ± 1

TN = 78 ± 2 
FP = 3 ± 2

Ccal 73 TNcal = 72 TNcal = 72
CEV 8 TNIV = 6 TNIV = 6

TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time- 
frequency domain approach), RSS (Residual Sum Squares), T2 (Hotelling T- 
squared), OC (out-of-control), Ccal (control images for PCA calibration), CEV 
(control images for PCA external validation), TP (true positive), TN (true 
negative), TNcal (true negative for calibration images), TNIV (true negative for 
external validation images), FP (false positive) and FN (false negative). Results 
are expressed as mean ± standard error.
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thus, less LVs were needed to maximize the classification of control and 
OC images.

To evaluate the classification performance of the LSD based opti
mized PCA models influenced by the approaches considered, the sta
tistical results in Table 8 illustrate together the CFMs, the number of 
images correctly classified and misclassified by using both multivariate 
control statistics. As can be seen, the RSS and T2 using TDA, FDA and 
TFDA were able to detect all of OC USI within the larger BFs (2.0 × 1.5 
cm and 2.0 × 1.0 cm), while in the detection of the smaller BFs sizes (1.5 
× 0.3 cm, 1.0 × 0.3 cm and 0.5 × 0.3 cm), there were 1 ± 1 (from the 
100 times randomly partition of data sets) of these OC USI incorrectly 
classified. Additionally, these optimized models did not correctly clas
sify at least 3 ± 1 control images (from Ccal and CEV) in all approaches 
(Table 8), which can be attributed to the natural variability of poultry 
meat (Garrido-Novell et al., 2018). The inherent variability such as 
compositional variations (lean meat and fat components) and intricate 
structural arrangement (tendons and connective tissues of poultry 
samples) could contribute to increase variability in control USI (Fariñas, 
Sanchez-Torres, et al., 2021). Beyond the inherent variability of chicken 
breast fillets, the occurrence of FN and FP can be further explained by 
the relationship between the optimization criteria and the model’s 
detection capabilities. In all approaches (TDA, FDA, and TFDA; Fig. 6), 
the OPCs were selected to achieve a balance by simultaneously maxi
mizing Se and Sp. This objective meant that the optimal number of LVs 
did not correspond to the absolute maximum of either Se or Sp indi
vidually. As a result, the model’s ability to completely minimize 
misclassification rates was limited. By applying the methodology pro
posed in this study and expanding the dataset for model validation, 
particularly for control samples, more robust and accurate statistical 
models could be developed (Novack et al., 2024). This would be crucial 
for addressing the challenges of industrial BF detection in the poultry 
industry.

As already explained, the use of TFDA-RSS slightly improved the 
goodness classification metrics compared to TDA-RSS and FDA-RSS. The 
confidence interval for Acc (96.07 %), based on the dataset used, ranged 

from 95.74 % to 96.85 %. A narrower confidence interval could be 
achieved by increasing the sample size. This improvement was achieved 
by the increase in the detection of one sample within BF of 0.5 × 0.3 cm 
compared to FDA and the increase in correctly classification of one 
control image compared to TDA (Table 8). Further, it can also be noticed 
that FDA-RSS was able to detect all medium-size BFs (1.5 × 0.3 cm). 
Regarding the T2 statistic (Table 8), the classification rate of control and 
OC images did not significantly improve by using TFDA. In addition, the 
classification performance of RSS and T2 was equivalent by using TDA 
and moderate better in RSS compared to T2 in FDA (reduction of 1 FN 
and FP by RSS) using lower number of LVs. Thus, either TFDA-RSS or 
FDA-RSS could be considered as the best option for practical industrial 
implementation. Results obtained in the present work were similar to 
those obtained by Zhao et al. (2006) in the detection of glass fragments 
within beverages packaged in glass containers by the integration of 
contact ultrasonics and Artificial Neural Networks (ANN). Nonetheless, 
the differential aspect of this work lies in the capability of the ultrasonic 
system used in the present work to inspect the entire product, rather 
than being confined to single-point measurements for detecting foreign 
bodies. This capability provides a significant advantage in analyzing the 
presence of foreign bodies, regardless of their location within food 
products.

Regarding the meat industry, several approaches have been explored 
for detecting BF in chicken breast fillets. Yoon et al. (2007) used a Near- 
Infrared (NIR) spectroscopy-based system to identify BF, achieving Acc 
> 90 %. Similarly, McFarlane et al. (2003) utilized X-ray backscatter 
techniques to detect clavicles and near-surface BF, reporting detection 
rates of approximately 85 % < Acc < 95 %. Nevertheless, X-ray-based 
methods, in general, are characterized by a significant drawback: they 
are expensive to operate, need costly equipment, pose risks to operators, 
and require complex post-image processing.

Moreover, spectroscopy-based sensors have also been extensively 
used to detect food adulteration and contamination. Fengou, Lianou 
et al. (2021) demonstrated the effectiveness of these sensors in identi
fying adulteration in minced pork and chicken, with accuracy rates 

Fig. 6. Classification performance of the multivariate control statistics used for detection of bone fragments in chicken breast fillets. Average Acc for both RSS and T2 

considering TDA (A, C), FDA (E, G) and TFDA (I, K) approaches. Average Se and Sp for both RSS and T2 considering TDA (B, D), FDA (F, H) and TFDA (J, L) ap
proaches. TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency domain approach), Acc (overall accuracy), Se (sensibility), Sp 
(specificity), RSS (Residual Sum Squares) and T2 (Hotelling T-squared).
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ranging from 92 % < Acc < 96 %, depending on the type of adulterant 
and sample preparation. Similarly, Fengou, Tsakanikas et al. (2021)
explored the rapid detection of adulterants in minced meat using 
advanced spectroscopic methods, showcasing their potential for high- 
throughput applications. These techniques offer rapid, non-destructive 
detection, but they often require highly specialized equipment and 
extensive data preprocessing for model calibration and validation. 
Conversely, the proposed USI combined with MIA offers a cost-effective, 
safe, and efficient alternative for real-time detection of BF in chicken 
breast fillets. The classification performance of the USI-MIA approach in 
this study reached Acc > 95 %, comparable to or exceeding that of X-ray 
and hyperspectral imaging. Moreover, the non-invasive nature of US, 
coupled with the minimal post-processing required by MIA, underscores 
its suitability for industrial-scale implementation.

3.2.1. Influence of training and validation dataset size on the BF detection
The statistical results for the detection of BF by using both RSS and T2 

which considered the TDA, FDA and TFDA approaches and four different 
datasets of total USI (100 %, 75 %, 50 % and 25 %), are depicted in 
Fig. 7. As can be observed (Fig. 7) the higher the USI in the analysis, the 
better the performance (progressively increase of Acc, ranging between 
80 % to 96 %) of both statistics for all the approaches. The increase in 
the USI number led to the model becoming more robust with more im
ages for model calibration (Hu et al., 2018). Thus, as can be seen for the 
RSS, which has provided the best classification results in all of the ap
proaches, the difference between considering the entire batch of samples 
or 75 % of the total samples, is moderate (< 4 % for TDA and < 3 % for 
FDA and TFDA, respectively; Fig. 7A, B and C). This fact indicates that 
the typical plateau value, as observed when plotting Acc versus the 
number of samples (Hu et al., 2018), has already been reached. The high 
percentage of correctly classified samples (>95 %) suggests that the 
number of samples tested in the present study (162, all data) was suf
ficient to maximize the detection of BFs in the selected approach (TDA, 
FDA, and/or TFDA) and the RSS multivariate control statistic used.

This study represents an initial step toward developing an accurate 
and robust quality monitoring system for detecting internal BF in 
chicken breast fillets. Future research should focus on assessing the 
detection limit of ultrasound technology in the identification of smallest 
bone size than the used in this study. To achieve this, it is essential to 
evaluate the suitability of the frequency employed in the current ultra
sound transducer or explore the use of higher frequencies with focused 
transducers. Additionally, the detection performance of foreign bodies 
obtained from other materials, such as plastics, metal fragments, and 
glass, by the integration of USI and MIA is also a significant task that 
should be assessed. Ultrasonic detection of those foreign bodies could be 

feasible as long as the acoustic impedance of the object differs from that 
of the surrounding food. In fact, the use of contact ultrasound has 
already yielded accurate results for detecting such materials within 
various food matrices (Hæggström & Luukkala, 2001; Leemans & 
Destain, 2009; Zhao et al., 2006), thus, the use of USI should be also 
evaluated.

The integrated use of USI and MIA for detecting BF in poultry meat 
presents a promising low-cost alternative to traditional technologies 
based on X-rays and NIR. This approach offers a practical solution for 
implementation immediately after the chicken deboning line, as the 
natural surface moisture and physical properties of the chicken fillets 
facilitate efficient coupling between the transducer and the material. By 
utilizing array-type transducers, similar to those used in medical ultra
sound, the precision and effectiveness of the system can be further 
enhanced. Adopting this method would not only reduce customer 
complaints but also ensure consistent product quality and, most 
importantly, guarantee the safety of the final product.

In the context of food safety, standards set by organizations such as 
the USDA Food Safety and Inspection Service (FSIS) in the United States 
and the European Food Safety Authority (EFSA) in the European Union 
require rigorous monitoring to ensure that processed meat products are 
free from contaminants and BF. These regulations aim to protect con
sumers from physical hazards that can lead to injuries or dissatisfaction, 
while also maintaining trust in food processing systems by minimizing 
recalls and non-compliance penalties. The development of real-time, 
non-invasive detection systems, such as the explored in this study, 
provides the industry with a means to ensure consistent compliance with 
these quality standards. This research highlights the crucial role of real- 
time detection systems in actual food processing, demonstrating their 
advantages over traditional methods in terms of speed, efficiency, non- 
invasiveness, and seamless adaptability to automation.

4. Conclusions

Contact ultrasound imaging has proven to be an effective and valu
able technology for detecting bone fragments of varying sizes, regardless 
of their location within the chicken breast. The difference in acoustic 
impedance between the chicken breast and the bone fragments 
increased energy attenuation, which was linked to the lower ultrasonic 
velocity and air-filled porous structure of chicken bones. The energy- 
magnitude and energy-distribution ultrasound parameters, computed 
in the time-frequency domains, effectively detected the bone fragments 
within chicken breast fillets. Both temporal and frequency-based ap
proaches quantified similar information regarding ultrasound signal 
attenuation and alterations in the wave distribution caused by the 

Fig. 7. Average Acc performance of RSS and T2 control statistics used for detection of bone fragments in chicken breast fillets using different number of ultrasound 
images. Results for TDA (A), FDA (B) and TFDA (C). TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency domain approach), Acc 
(overall accuracy), RSS (Residual Sum Squares) and T2 (Hotelling T-squared).
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presence of varying sizes of bone fragments. The detection of bone 
fragments was influenced by their size, although good classification 
results were found for smaller bone fragments.

The Residual Sum Squares multivariate control statistic has proven 
to be the most robust for detecting bone fragments within chicken 
breasts, irrespective of the ultrasound parameters (time-frequency) used 
during the model’s tuning. This approach has emerged as a valuable tool 
for integration into a monitoring system, facilitating the classification of 
contact ultrasound images of control chicken breasts and those con
taining bone fragments. Future work should be conducted in order to 
assess the detection limits of contact ultrasound technology for detecting 
small-sized bone fragments and to detect foreign bodies of different 
nature, such as plastics, glass, and metal pieces, which could also 
contaminate the chicken breast during the manufacturing process. 
Expanding the dataset would enable the development of more robust 
and accurate statistical models, which are essential for effective indus
trial BF detection in the poultry industry. In addition, the development 
of ultrasonic arrays has to be also addressed in order to improve mea
surement rate at industrial level. These aspects will be essential to 
develop a robust industrial prototype that can be used for real-time 
quality monitoring of the entire poultry meat production.
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