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Detección de cuerpos extraños en postres gelificados mediante 

tecnologías ultrasónicas 

Ricardo García-Gómez1., Gentil Andrés Collazos-Escobar1 y José Vicente García-Pérez1 

Resumen 

La detección en tiempo real de cuerpos extraños en alimentos es un desafío para las 

industrias de fabricación 4.0. Existe la necesidad de desarrollar sistemas no destructivos, 

no invasivos y de bajo coste para la monitorización en línea de la calidad de los productos 

alimentarios en este tipo de industrias. La tecnología de ultrasonidos sin contacto es una 

solución prometedora, ya que ofrece varios beneficios, que incluyen una medida 

totalmente no invasiva, elevada resolución, inspección rápida del total de la producción, 

bajo coste y versatilidad. Por lo tanto, el objetivo principal de este trabajo fue evaluar la 

viabilidad del uso de la tecnología de ultrasonido sin contacto para la detección de 

cuerpos extraños en gelatinas. Para ello, gelatinas comerciales (8 cm de diámetro, 6 cm 

de altura) se caracterizaron en forma líquida y sólida mediante ultrasonidos sin contacto 

(transductores de 0.28 MHz en modo transmisión recepción) y posteriormente se 

insertaron diferentes cuerpos extraños (piezas metálicas, plásticas y moscas) con 

dimensiones que variaron entre 0.25 a 0.7 cm. Posteriormente, se obtuvieron tres 

parámetros ultrasónicos relacionados con la energía de la señal ultrasónica que fueron 

calculados en el dominio temporal (distancia pico-pico, norma e integral). Se analizó la 

influencia de los cuerpos extraños en los parámetros de energía mediante el Análisis de 

Varianza multifactorial (ANOVA). Adicionalmente, se calibró un modelo de regresión en 

mínimos cuadrados parciales-versión discriminante (PLS-DA) empleando las señales 

ultrasónicas para su ensamble con modelos de aprendizaje automático supervisado en 

estructuras latentes como las Máquinas de Soporte Vectorial (LV-SVM) y Árboles de 

clasificación (LV-RF). Los resultados experimentales mostraron que la presencia de 

cuerpos extraños en las gelatinas provocó alteraciones en las ondas ultrasónicas, lo que 

se reflejó en los parámetros relacionados con la energía asociados con efectos de 

absorción, reflexión o refracción. Así, se observó que la distancia pico-pico de la señal, la 

norma y la integral disminuyeron en promedio el 23%, 60% y 44%, respectivamente. 

Aunque las diferencias fueron dependientes (p<0.05) del estado de la gelatina y del tipo 

y tamaño del cuerpo extraño. El modelo LV-SVM proporcionó la mejor capacidad de 

clasificación de las señales ultrasónicas, con una precisión general de más del 99% tanto 

para las señales ultrasónicas empleadas en el entrenamiento de los modelos como las 

del conjunto de validación. Los resultados pusieron de manifiesto la viabilidad del uso 

de los ultrasonidos sin contacto para la rápida y precisa detección de cuerpos extraños 

en gelatinas y su posterior aplicación industrial en línea.  

 

Palabras clave: análisis en tiempo real, no invasivo, no destructivo, cuerpos extraños, 

gelatinas, ultrasonidos, acoplamiento por aire, industria 4.0, digitalización. 

 



Detection of foreign bodies in jelly desserts using ultrasonic technologies 

Ricardo García-Gómez1., Gentil Andrés Collazos-Escobar1 y José Vicente García-Pérez1 

Abstract 

Real-time detection of foreign bodies in food is a challenge for manufacturing 4.0 
industries. There is a need to develop non-destructive, non-invasive and low-cost 
systems for online monitoring of food product quality in these types of industries. Non-
contact ultrasound technology is a promising solution as it offers several benefits, 
including fully non-invasive measurement, high resolution, rapid inspection of the entire 
production, low cost and versatility. Therefore, the main objective of this work was to 
evaluate the feasibility of using non-contact ultrasound technology for the detection of 
foreign bodies in gelatins. For this purpose, commercial gelatins (8 cm diameter, 6 cm 
height) were characterized in liquid and solid form using non-contact ultrasound (0.28 
MHz transducers in transmit-receive mode) and subsequently different foreign bodies 
(metallic, plastic parts and flies) with dimensions varying between 0.25 to 0.7 cm were 
inserted. Subsequently, three ultrasonic parameters related to the energy of the 
ultrasonic signal were obtained and calculated in the time domain (peak-peak distance, 
norm and integral). The influence of foreign bodies on the energy parameters was 
analyzed by multifactorial Analysis of Variance (ANOVA). Additionally, a partial least 
squares regression model-discriminant version (PLS-DA) was calibrated using the 
ultrasonic signals for assembly with supervised machine learning models in latent 
structures such as Support Vector Machines (LV-SVM) and Classification Trees (LV-RF). 
The experimental results showed that the presence of foreign bodies in the gelatins 
caused alterations in the ultrasonic waves, which was reflected in the energy-related 
parameters associated with absorption, reflection or refraction effects. Thus, it was 
observed that the peak-peak distance of the signal, the norm and the integral decreased 
on average by 23%, 60% and 44%, respectively. Although the differences were 
dependent (p < 0.05) on the state of the gelatin and the type and size of the foreign body. 
The LV-SVM model provided the best classification capability for ultrasonic signals, with 
an overall accuracy of over 99% for both the ultrasonic signals used for training the 
models and those of the validation set. The results demonstrated the feasibility of using 
non-contact ultrasound for the rapid and accurate detection of foreign bodies in gelatins 
and its subsequent industrial application in line. 

 

 

Keywords: real-time analysis, non-invasive, non-destructive, foreign bodies, gelatins, 

ultrasound, air coupling, industry 4.0, digitalization. 

  



Detecció de cossos estranys en postres gelificats mitjançant 

tecnologies ultrasòniques 

Ricardo García-Gómez1., Gentil Andres Collazos-Escobar1 y José Vicente García-Pérez1 

Resum 

La detecció en temps real de cossos estranys en aliments és un desafiament per a les 

indústries de fabricació 4.0. Existeix la necessitat de desenvolupar sistemes no 

destructius, no invasius i de baix cost per a la monitorització en línia de la qualitat dels 

productes alimentaris en aquest tipus d’indústries. La tecnologia d'ultrasons sense 

contacte és una solució prometedora, ja que ofereix diversos beneficis, que inclouen una 

mesura totalment no invasiva, elevada resolució, inspecció ràpida del total de la 

producció, baix cost i versatilitat. Per tant, l’objectiu principal d’aquest treball va ser 

avaluar la viabilitat de l’ús de la tecnologia ultrasò sense contacte per a la detecció de 

cossos estranys en gelatines. Per això, gelatines comercials (8 cm de diàmetre, 6 cm 

d'alçada) es van caracteritzar en forma líquida i sòlida mitjançant ultrasons sense 

contacte (transductors de 0.28 MHz en mode transmissió recepció) i posteriorment es 

van inserir diferents cossos estranys (peces metàl·liques, plàstiques i mosques) amb 

dimensions que van variar entre 0.25 a 0.7 cm. Posteriorment, es van obtenir tres 

paràmetres ultrasònics relacionats amb l'energia del senyal ultrasònic que van ser 

calculats en el domini temporal (distància pic-pic, norma i integral). Es va analitzar la 

influència dels cossos estranys als paràmetres d'energia mitjançant l'Anàlisi de Variança 

multifactorial (ANOVA). Addicionalment, es va calibrar un model de regressió en mínims 

quadrats parcials-versió discriminant (PLS-DA) emprant els senyals ultrasònics per a 

l'assemblatge amb models d'aprenentatge automàtic supervisat en estructures latents 

com les Màquines de Suport Vectorial (LV-SVM) i Arbres de classificació (LV-RF). Els 

resultats experimentals van mostrar que la presència de cossos estranys a les gelatines 

va provocar alteracions a les ones ultrasòniques, cosa que es va reflectir en els 

paràmetres relacionats amb l'energia associats amb efectes d'absorció, reflexió o 

refracció. Així, es va observar que la distància pic-pic del senyal, la norma i la integral van 

disminuir de mitjana el 23%, 60% i 44%, respectivament. Tot i que les diferències van ser 

dependents (p<0.05) de l'estat de la gelatina i del tipus i la mesura del cos estrany. El 

model LV-SVM va proporcionar la millor capacitat de classificació dels senyals 

ultrasònics, amb una precisió general de més del 99% tant per als senyals ultrasònics 

emprats en l'entrenament dels models com els del conjunt de validació. Els resultats van 

posar de manifest la viabilitat de l'ús dels ultrasons sense contacte per a la ràpida i 

precisa detecció de cossos estranys en gelatines i la seua posterior aplicació industrial en 

línia. 

 

Paraules clau: anàlisi en temps real, no invasiu, no destructiu, cossos estranys, gelatines, 

ultrasons, acoblament per aire, indústria 4.0, digitalització.  
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1. INTRODUCCIÓN 

1.1. DIGITALIZACIÓN EN LA INDUSTRIA ALIMENTARIA 
 

La industria alimentaria se enfrenta a una transformación digital impulsada por los 

avances tecnológicos desarrollados en la cuarta revolución industrial (Industria 4.0). La 

digitalización de la industria alimentaria ha promovido la demanda de sistemas 

innovadores de procesamiento e inspección de la calidad de productos y procesos 

agroalimentarios para su implementación en línea de proceso en tiempo real (Hassoun 

et al., 2023; Jagtap et al., 2021). En ese sentido, la seguridad en la industria alimentaria 

4.0 es un término derivado de la industria 4.0, que se centra en los aspectos de la gestión 

de la calidad de los alimentos basados en sistemas ciberfísicos. Dichos sistemas emplean 

la alta conectividad de los sensores y equipos físicos instalados en los procesos de 

elaboración de productos y su interacción en tiempo real con centrales de cálculo que 

procesan dicha información para la toma de decisiones en tiempo real y la optimización 

de los procesos (Ali & Hashim, 2021). La integración del ecosistema digital en la industria 

alimentaria tiene un elevado potencial en términos de un avance significativo de la 

trazabilidad de los productos alimentarios, la detección productos que no cumplen con 

las especificaciones de calidad requeridos y la detección de contaminantes en los 

alimentos manufacturados (Trollman et al., 2024). 

Respecto a la presencia de contaminantes en los productos elaborados, existe una 

creciente preocupación en la industria relacionada con la incidencia de casos en los que 

consumidores reportan la presencia cuerpos extraños o de materiales ajenos a la matriz 

alimentaria. Estos contaminantes pueden ser de diversos orígenes, desde contaminantes 

físicos como fragmentos de huesos, piezas metálicas, plásticos hasta la presencia de 

contaminantes biológicos como insectos, los cuales por ningún motivo deben aparecer 

en los alimentos comercializados (Díaz et al., 2011).  

1.2. CARACTERÍSTICAS DE LAS GELATINAS 
 

Las gelatinas son sustancias coloidales obtenidas principalmente a partir de colágeno 

animal, son muy utilizadas en la industria de la alimentación por sus propiedades 

texturales, gelificantes y estabilizantes. La capacidad de las gelatinas para formar geles 

termo-reversibles las convierte en un ingrediente muy importante en la elaboración de 

una gran variedad de productos (Ahmad et al., 2024).  

Debido a la composición de las gelatinas y a los procesos industriales implicados en su 

producción, estos productos no están exentos de los riesgos relacionados con la 

presencia de cuerpos extraños. Estos contaminantes pueden introducirse en el interior 

de las gelatinas y presentar un verdadero problema de seguridad para el consumidor. 

(Sebastian van As et al., 2012). 
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1.3. SISTEMAS DE DETECCIÓN DE CUERPOS EXTRAÑOS 
 

La detección de cuerpos extraños es un componente crítico de la seguridad y gestión de 

calidad en la industria alimentaria. La presencia de cuerpos extraños en los productos 

alimenticios implica una contaminación física y/o biológica que representa serios riesgos 

para la salud de los consumidores, además de afectar negativamente a la reputación y 

el cumplimiento legal de las empresas (Meftah & Azimin, 2012). Esto puede llevar a 

costosos incidentes de retiradas de productos y desperdicios para las compañías. De 

hecho, se ha reconocido como la principal fuente de quejas de los consumidores 

recibidas por las empresas alimentarias (Edwards & Stringer, 2007). 

Los cuerpos extraños pueden incluir una amplia gama de materiales, como metales, 

vidrio, plástico, insectos, piedras, o cualquier otra sustancia no deseada que se incorpore 

accidentalmente en los productos alimenticios durante la fabricación, el empaquetado 

o la manipulación. Materiales relacionados con los alimentos, como fragmentos de 

hueso en productos cárnicos, así como aquellos que forman parte del alimento mismo, 

como una cantidad inadecuada de cavidades en la estructura del queso, también se 

consideran cuerpos extraños debido a que están asociados con un procesamiento 

deficiente (Djekic et al., 2017). 

En un estudio realizado por Edwards & Stringer (2007), se reportó que los cuerpos 

extraños más comunes en los 2347 incidentes alimentarios relacionados con la presencia 

de materiales extraños manifestaron que el 45.7% correspondió a la presencia de 

fragmentos de vidrio, 10.8% a plásticos, 8.7% a fragmentos de origen animal, 7.2% a 

piezas y fragmentos metálicos, 5.8% a materiales de envases, 4.3% a insectos y 

artrópodos y menos del 4% a químicos, medicamentos, hongos y fibras. En ese sentido, 

la detección de los cuerpos extraños en los productos manufacturados antes de que 

estos lleguen al consumidor final sigue siendo un gran reto al cual se enfrenta la industria 

alimentaria.  

Los sistemas actuales de detección de cuerpos extraños son útiles para detectar cuerpos 

extraños como los metales. De igual modo, todos aquellos materiales con una densidad 

muy diferente a la del producto alimenticio, como es el caso de pequeños fragmentos 

de piedras. Sin embargo, la detección de cuerpos extraños “blandos” como los plásticos, 

la madera y pequeños cuerpos biológicos, como insectos y fragmentos de huesos, 

representan un desafío tecnológico. En la producción de alimentos, el riesgo de 

contaminación por cuerpos extraños es latente, debido a que los contaminantes pueden 

provenir de diversas partes del proceso o del propio alimento (Ho et al., 2007). Durante 

la fabricación y envasado de alimentos, pequeños fragmentos o piezas procedentes de 

las máquinas de procesamiento, equipos, cintas transportadoras y/o implementos de 

procesado pueden contaminar los productos. En este contexto, el uso de sensores no 

invasivos, precisos y robustos que permitan monitorizar los productos alimentarios a 

muy alta velocidad con el objetivo de identificar cuerpos extraños potencialmente 

peligrosos, aún no se ha desarrollado en la industria alimentaria. Diferentes técnicas 

basadas en radiación electromagnética, como detectores electromagnéticos, rayos X e 
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imágenes hiperespectrales, se han utilizado durante muchos años para detectar cuerpos 

extraños en alimentos (Yaqoob et al., 2021). Las primeras técnicas son ampliamente 

utilizadas en la industria alimentaria debido a su bajo costo y precisión, pero están 

limitadas a la detección de materiales basados en metales, mientras que las tecnologías 

electromagnéticas, también conocidas como fotónicas, tienen varias limitaciones que 

hacen que su implementación en procesos automatizados en línea de proceso sea 

compleja. El alto costo, la complejidad, la baja capacidad de penetración de estas 

técnicas, la cual impide la detección de materiales ubicados en el interior del producto y 

la baja capacidad de detección de objetos de baja densidad son algunos de sus 

principales inconvenientes (Chen et al., 2013). Los materiales de alta densidad o mucho 

más densos que la matriz alimentaria se detectan fácilmente con la mayoría de las 

técnicas tradicionales, pero la detección cuerpos extraños como plásticos e insectos, no 

puede conseguirse con estas técnicas tradicionales y representan una de las principales 

preocupaciones en el área de monitorización de la calidad de los alimentos (Li et al., 

2015).  

Actualmente, en la industria, la presencia de cuerpos extraños externos puede ser 

detectable mediante el uso de sistemas de visión automáticos, por el contrario, los 

cuerpos internos representan un reto tecnológico constante que requiere el desarrollo 

de tecnologías que faciliten su detección (Payne et al., 2023). 

1.4. SISTEMAS ULTRASÓNICOS 

 
El uso de ultrasonidos ha demostrado ser una alternativa prometedora y asequible para 

abordar el desafío de la inspección automatizada de la calidad alimentaria. Esta técnica 

permite una inspección de calidad, rápida, precisa, económica y sencilla de las 

propiedades del producto alimentario. 

Las medidas convencionales de ultrasonidos se han estudiado extensamente dado su 

carácter no destructivo para la detección de propiedades de calidad en alimentos (Mohd 

Khairi et al., 2018). Las técnicas ultrasónicas convencionales requieren el contacto íntimo 

entre el producto y el sensor, y en algunos casos, el uso de materiales de acople (agua, 

aceite, glicerina o gel) o realizar una ligera presión para mejorar la transferencia de la 

energía en el interior. El contacto entre el sensor y producto dificulta la aplicación 

ultrasónica en la industria alimentaria para su uso en línea de proceso debido a la 

posibilidad de contaminación cruzada o daño superficial del producto y ralentiza la 

medida. Por lo tanto, los ultrasonidos convencionales deben caracterizarse como una 

tecnología no destructiva, pero en cierto modo mínimamente invasiva. Estas 

características hacen de las medidas convencionales de ultrasonidos una opción a 

considerar, pero susceptibles de encontrar alternativas. 

El desarrollo de la tecnología de ultrasonidos sin contacto ha puesto a disposición de la 

industria alimentaria una técnica novedosa para reemplazar los métodos convencionales 

utilizados en la inspección automatizada de la calidad alimentaria, se trata de un sistema 

de medida por ultrasonidos en el que se envía una señal ultrasónica a través del aire 
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utilizando un transductor emisor y otro receptor. Las ondas ultrasónicas atraviesan el 

alimento y sufren una atenuación determinada dependiendo de diferentes casos como 

estado del alimento, presencia de contaminantes, densidad del producto…(Fariñas et al., 

2021). Los sensores ultrasónicos sin contacto permiten la extracción de grandes 

volúmenes de información cuando se emplea para monitorizar un producto alimentario 

durante su fabricación. Esta capacidad no solo hace posible la clasificación del producto, 

sino que también permite la identificación temprana de eventos de perturbación del 

proceso, posibilitando el rechazo de productos que se desvían del estándar o el ajuste 

de los parámetros del proceso cuando se identifica una desviación. La característica 

distintiva de este sistema es que consta de transductores piezoeléctricos diseñados 

especialmente para mejorar su rendimiento en el aire y optimizados para aplicaciones 

de inspección de materiales como los alimentos (Gómez & Gómez´alvarez-Arenas, 

2004). En esta técnica no se precisa de un material de acople a diferencia de los sistemas 

ultrasónicos tradicionales (Chen et al., 2013). De esta técnica destaca su versatilidad, fácil 

implementación, robustez ante entornos industriales, alta sensibilidad y bajo coste. Por 

lo tanto, esta tecnología proporciona una herramienta para la monitorización en línea 

de las propiedades del producto y los cambios que ocurren en los atributos de calidad 

interna del producto alimenticio durante toda la producción. 

Trabajos previos ya han abordado el uso de los ultrasonidos sin contacto en los sistemas 

de detección de cuerpos extraños en alimentos. Cho & Irudayaraj (2003) evaluaron el 

rendimiento de un sistema de ultrasonido sin contacto operando en modo transmisión-

recepción usando transductores de 1 MHz con compensación para inestabilidad del aire 

para detectar fragmentos de vidrio y metal en queso y aves. La necesidad de 

compensación por el aire surge debido al gran desajuste de impedancia entre los 

materiales del transductor y el aire, así como a la alta frecuencia utilizada. En 

consecuencia, la energía transmitida al material es baja, resultando en una transferencia 

deficiente de energía ultrasónica. Esta baja eficiencia limita las medidas precisas en 

materiales de alta atenuación, como los alimentos, dificultando así su aplicación 

industrial. Además, Gan et al. (2006) realizaron medidas a escala de laboratorio usando 

transductores capacitivos en modo de transmisión-recepción en botellas de plástico 

rellenas de líquidos. El objetivo era determinar si la presencia de un cuerpo extraños en 

una botella llena de agua podría ser detectada. El estudio demostró que los cuerpos 

extraños lograron ser detectados, pero las señales ultrasónicas estaban distorsionadas 

debido a los efectos de difracción y refracción. Por lo tanto, los autores concluyeron que 

es necesario mejorar la precisión de este sistema capacitivo. La principal limitación de 

los estudios mencionados radica en los sensores utilizados que dificultan posteriores 

aplicaciones industriales (Gómez & Gómez´alvarez-Arenas, 2004) principalmente 

derivadas de su escaso ancho de banda y sensibilidad, lo que afecta significativamente 

al nivel de energía necesario para la inspección. En este sentido, el desarrollo de 

transductores piezoeléctricos con capas de acoplamiento de impedancias para mejorar 

la transferencia de la energía ultrasónica entre el sensor y el aire ya se ha utilizado con 

éxito para la determinación de propiedades de calidad en alimentos, y su uso para la 

detección de cuerpos extraños (Fariñas et al., 2023). 
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1.5. ANÁLISIS MULTIVARIANTE 
 

El elevado volumen de datos que se puede obtener con la tecnología de ultrasonidos 

requiere del uso de técnicas avanzadas de modelización multivariante para extraer la 

máxima información de los procesos. En ese sentido, las herramientas de análisis 

multivariante de procesos y técnicas de aprendizaje automático supervisado conforman 

las herramientas avanzadas para apoyar los procesos de transformación digital de la 

industria alimentaria en el marco de la industria 4.0.  

El análisis multivariante se basa en el desarrollo de algoritmos y modelos informáticos 

que pueden manejar grandes volúmenes de información y permitir a las computadoras 

aprender las relaciones internas de los datos de los procesos, tomar decisiones y/o hacer 

predicciones basadas en datos de manera automática. Así, la industria alimentaria puede 

definitivamente beneficiarse de estas técnicas (Ni et al., 2020). Por lo tanto, las 

herramientas exploratorias, de compresión y reducción de la dimensionalidad como el 

Análisis de Componentes Principales (PCA) y la regresión en mínimos cuadrados 

parciales (PLS) (Colucci et al., 2019; Prats-Montalbán et al., 2011; Prats-Montalbán & 

Ferrer, 2007; López ect al., 2006) pueden contribuir al estudio del proceso de fabricación 

de productos y al desarrollo de modelos de detección alimentos contaminados y/o 

adulterados (Tanui et al., 2022). 

2. OBJETIVOS 
 

El objetivo general del presente trabajo es determinar la viabilidad del uso de un sistema 

de ultrasonidos sin contacto de alta eficiencia para la detección de cuerpos extraños en 

un postre gelificado, producto popularmente conocido como gelatina. Para alcanzar este 

objetivo general, se abordarán los siguientes objetivos particulares:  

1) Evaluar la capacidad de la tecnología de ultrasonidos sin contacto para la 

detección de cuerpos extraños en el producto comercial en estado líquido y 

sólido. 

2) Analizar la capacidad de la tecnología de ultrasonidos sin contacto para la 

detección de cuerpos extraños de diferentes materiales (metales, plásticos e 

insectos) y tamaños. 

3) Abordar de forma preliminar el desarrollo de modelos estadísticos multivariantes 

basados en el uso de los parámetros ultrasónicos para la detección automática 

de cuerpos extraños. 
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3. MATERIALES Y MÉTODOS 

3.1 MUESTRAS Y CARACTERIZACIÓN  
 

Gelatinas comerciales (Figura 1A), formalmente denominadas como postres gelificados, 

fueron comprados en una empresa de alimentación local en Valencia (Gelatinas de 

frambuesa-Hacendado, Mercadona, España) y se conservaron en refrigeración a 4 °C 

hasta su uso. Las muestras fueron inicialmente caracterizadas en función de las 

dimensiones del recipiente de envasado, contenido de humedad, peso y volumen de 

producto. Para este procedimiento, se emplearon 10 gelatinas de las cuales su contenido 

fue retirado y pesado empleando una balanza de precisión (PCE-PM 3T, PCE, Países 

bajos). Posteriormente, el producto fue fundido en un baño de agua con agitación y a 50 

ºC durante 5 minutos (TECTRON 200, P-Selecta, España) y su volumen fue medido 

empleando una probeta de 100 ± 2 mL. EL contenido de humedad se determinó secando 

10 g de la gelatina en una estufa de vacío (VACIOTEM-T, P-Selecta, España) a 150 ºC 

durante 24 h hasta peso constante. La determinación del contenido de humedad de las 

gelatinas se realizó considerando 10 repeticiones. El cálculo del contenido de humedad 

en base húmeda (CHbh, %) se realizó empleando la ecuación 1 y posteriormente los 

resultados fueron expresados como contenido de humedad en base seca (CHbs, kg agua-

W/kg materia seca d.m) utilizando la ecuación 2. Además, tanto el contenido de 

humedad como el volumen y el peso fueron expresados como valores promedios ± 

desviación estándar considerando todas las réplicas empleadas (Figura 1A). 

CHbh(%) =
Pi−Pf

Pi
∗ 100     (1) 

CHbs(kg
W

kg
m. s. ) =

CHbh(%)

100−CHbh(%)
                                   (2) 

Donde Pi y Pf son las masas (g) iniciales y finales (posterior al secado en horno) de las 

muestras de gelatinas, respectivamente. 

 

Figura 1. Caracterización de gelatinas comerciales. Determinación de peso, volumen y 

contenido de humedad del producto envasado (A) y dimensiones del envase del 

producto (B).  
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3.2 CUERPOS EXTRAÑOS 
 

Para evaluar la capacidad de los ultrasonidos sin contacto en la detección de diferentes 

tipos de cuerpos extraños, se consideró un conjunto de materiales de diferentes 

geometrías y dimensiones, así como un contaminante de origen biológico con 

dimensiones variables. Los tipos de cuerpos extraños, la geometría y sus dimensiones se 

observan en la Figura 2 y sus especificaciones se detallan en la Tabla 1.  

 

 

 

 

 

Figura 2. Piezas metálicas (A-B), plásticas (C-D) y mosca (E) empleadas como cuerpos 

extraños. Las dimensiones de los cuerpos extraños se expresaron en cm (centímetros). 

d (diámetro). 

 

Tabla 1. Especificaciones de los materiales empleados como cuerpos extraños 

Material Geometría Dimensiones (cm) Espesor (mm) 

Metal 
(Acero inoxidable 316) 
 

Circular 

Tamaño medio: 
Diámetro = 0.5 

Tamaño pequeño: 
Diámetro = 0.25 

Tamaño medio: 
0.5 

Tamaño pequeño: 
0.5 

Plástico 
(Poliuretano termoplástico) 

Cuadrado 

Tamaño medio: 
Ancho=0.5 
Alto = 0.5 

Tamaño pequeño: 
Ancho=0.25 
Alto = 0.25 

Tamaño medio: 
1 

Tamaño pequeño: 
1 

Mosca 
(Musca domestica) 

Irregular 
Envergadura: 

0.5-0.7 
3-4  

 

Los cuerpos extraños (Tabla 1) fueron seleccionados debido a que son materiales 

comúnmente encontrados en las incidencias por cuerpos extraños en alimentos 

(Edwards & Stringer, 2007) y porque forman parte de los equipos como piezas o 

pequeños fragmentos, de los instrumentos y de las cintas transportadoras en las líneas 

de producción. Se consideraron dos tamaños (medio y pequeño) de los cuerpos extraños 

metálicos y plásticos con la finalidad de evaluar el umbral de detección de los 

ultrasonidos sin contacto en la detección gelatinas contaminadas con piezas y/o 

fragmentos físicos de dimensiones variables. Respecto al cuerpo extraño biológico, la 
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envergadura en las moscas se consideró como la distancia entre el ala izquierda y 

derecha del espécimen. Dada la variabilidad en las dimensiones de las moscas, los 

tamaños medio y pequeño para esta tipología de cuerpo extraño no logro ser definida. 

Por lo tanto, tres tipologías de cuerpos extraños y dos tamaños para las dos primeras 

clases (5 cuerpos extraños) fueron analizadas. 

3.3 CONFIGURACIÓN EXPERIMENTAL DE ULTRASONIDOS SIN CONTACTO 

 
Las medidas ultrasónicas sin contacto de las muestras de gelatinas comerciales de 

control y con cuerpos extraños fueron experimentalmente adquiridas mediante la 

configuración experimental ilustrada en la Figura 3 y Figura 4. 

  

Figura 3. Configuración experimental para adquisición de señales de ultrasonido sin 

contacto. Transductores de ultrasonidos sin contacto (A), gelatina (B), generador-

receptor (C), tarjeta digitalizadora (D) y ordenador (E) 

 

El sistema ultrasónico consistió en un par de transductores piezoeléctricos no focalizados 

que operaron en modo de transmisión- recepción (Figura 3A), con una frecuencia central 

de 0.28 MHz, una sensibilidad de pico de −25 dB y un área activa de 27 mm (US-BioMat 

Lab., ITEFI-CSIC, Madrid, España). Los transductores fueron previamente alineados entre 

sí y colocados a 12 cm de distancia. El generador de pulsos (Figura 3C) (5077 PR, 

Olympus, USA) emitió una onda cuadrada de semiciclo con una amplitud de 400 V 

ajustada a la frecuencia central de los transductores (Figura 3A). La señal recibida del 

transductor receptor se amplificó en 59 dB (Figura 3C), se digitalizó a una velocidad de 

adquisición de 10 millones de puntos/s, tomando 5000 puntos de cada señal. Se obtuvo 

para cada muestra de gelatina una señal ultrasónica producto del promedio de 10 

señales. Este proceso se realizó utilizando una tarjeta digitalizadora de alta velocidad 
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(Figura 3D) (NI 6501, National Instruments, USA) conectada a través de un dispositivo 

USB de entrada/salida a un ordenador (Figura 3E). Las gelatinas comerciales (Figura 3B) 

se colocaron en un soporte de muestras para la adquisición de las señales ultrasónicas 

(Figura 4). Todos los componentes de este sistema se gestionaron a través de un software 

desarrollado en LabVIEW® 2020 (National Instruments, USA). El proceso de adquisición 

de las señales de ultrasonidos sin contacto en las gelatinas se llevó a cabo en condiciones 

ambientales de 25 ± 1 ºC y 60 ± 4 %RH. 

 

 

Figura 4. Medida ultrasónica sin contacto en gelatina 
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3.4 METODOLOGÍA EXPERIMENTAL 
 

En la Figura 5 se muestra un resumen de la metodología experimental llevada a cabo 

para las medidas en las gelatinas comerciales y la incorporación de los cuerpos extraños.  

 

Figura 5. Preparación de muestras y procedimiento experimental para las medidas en 

gelatinas. Gelatinas de control (A), refrigeración gelatinas de control (B), medida 

ultrasónica gelatinas de control en estado sólido (C), baño maría para gelatinas de 

control (D), medida ultrasónica gelatinas de control en estado líquido (E), incorporación 

de cuerpos extraños (F), baño maría para gelatinas contaminadas (G), medida 

ultrasónica gelatinas contaminadas en estado líquido (H), refrigeración gelatinas 

contaminadas (I) y medida ultrasónica gelatinas contaminadas en estado sólido (J). 

Las gelatinas comerciales en estado sólido (Figura 5A) fueron refrigeradas hasta alcanzar 

una temperatura de 4 °C (Figura 5B). Posteriormente, se midieron mediante el equipo 

ultrasonido (Figura 5C) y se fundieron en baño de agua con agitación (TECTRON 200, P-

Selecta, España) durante 15 minutos a una temperatura de 50 °C (Figura 5D) y se 

volvieron a medir (Figura 5E). De esta forma, se obtuvieron las medidas de las muestras 

control en las gelatinas en forma sólida y líquida. Posteriormente, se incorporaron los 

cuerpos extraños de manera independiente en las muestras fundidas (Figura 5F), se 

volvió a realizar un baño maría (Figura 5G) y se volvió a medir en forma líquida (Figura 

5H). Seguidamente, las gelatinas fueron almacenadas nuevamente en refrigeración a 4 

ºC (Figura 5I) y pasadas 24 horas, las señales ultrasónicas de las muestras en estado 

sólido y con cuerpos extraños fueron adquiridas (Figura 5J). Un total de 25 gelatinas 

(Figura 5A) fueron sometidas al procedimiento experimental. Como resultado y 

considerando que todas las gelatinas fueron medidas sin presencia de cuerpos extraños 

(control), los 5 tipos de cuerpos extraños analizados (5 gelatinas analizadas por cada tipo 
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de cuerpo), la medida del producto en 2 estados (sólido y liquido) se obtuvieron un total 

de 100 señales de ultrasonidos sin contacto.  

3.5 ANÁLISIS DE LA SEÑAL ULTRASÓNICA  

3.5.1 Corrección de línea base 
 

Con la finalidad de evitar cualquier sesgo relacionado con la adquisición experimental 

de las señales ultrasónicas en las muestras de gelatinas de control y con cuerpos 

extraños, se realizó la corrección de línea base. Este procedimiento consistió en la 

sustracción del valor medio de cada señal en el rango de la señal de 1300-1800 puntos. 

Si el valor medio de la señal en este intervalo era menor a 0 V, el valor medio absoluto 

se añadía a toda la señal. Por el contrario, si el valor medio superaba los 0 V, se restaba 

de la señal. De esta forma, se corrigió el sesgo en la adquisición de las señales y se 

aseguró que este artefacto en la línea base no influyera el cálculo de los parámetros 

ultrasónicos relacionados con la energía (Sección 2.5.2). Un ejemplo de este 

procedimiento se puede observar en la Figura 6A. 

3.5.2 Calculo de parámetros relacionados con la energía  
 

Los parámetros ultrasónicos relacionados con la energía de las señales, como la distancia 

pico-pico (PP, V), la norma al cuadrado (ENG, V2) y la integral (INT, V µs) (A. Bowler et al., 

2023; A. L. Bowler et al., 2020) fueron calculadas en las señales ultrasónicas en el 

dominio temporal. Para ello, el PP, ENG e INT fueron determinadas mediante las 

ecuaciones 3 a 5, respectivamente. 

PP = max(Xt)– max|min(Xt)|                                            (3) 

ENG = ‖Xt‖2                                                          (4) 

INT = ∑ Xzti
ti

N
i=1                                                        (5) 

Donde Xt es la señal ultrasónica de cada muestra en el dominio temporal y Xzti representa 

cada uno de los elementos de la señal Xt en el instante de tiempo ti. El cálculo de INT se 

realizó mediante el método numérico de los trapecios utilizando la función “trapz” de 

MATLAB® R2023a (The MathWorks Inc, USA). 

La selección de los parámetros ultrasónicos relacionados con la energía se realizó 

basados en la capacidad que tienen estas métricas de cuantificar la amplitud de la señal 

(medida a través del PP, Figura 6B), el área bajo la curva de los valores positivos de la 

señal ultrasónica (medida a través de INT, Figura 6B) y todas las posibles reverberaciones 

y resonancias de la señal ultrasónica (medida a través de ENG, Figura 6B).  
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Figura 6. Corrección de línea base en las señales ultrasónicas (A) y cálculo de parámetros 

relacionados con la energía (B) 

3.6 ANÁLISIS ESTADÍSTICO 
 

Para cuantificar la influencia del estado de la gelatina (solido o liquido) sobre los 

parámetros ultrasónicos relacionados con la energía, se empleó el Análisis de Varianza 

(ANOVA) de una vía. Este procedimiento fue realizado considerando las gelatinas de 

control, con la finalidad de analizar las diferencias de los parámetros ultrasónicos 

relacionados con la energía en el producto en las diferentes etapas de procesado como 

producto recién envasado (líquido) o como producto almacenado en refrigeración 

(solido). Adicionalmente, para elucidar el efecto en conjunto de los cuerpos extraños, su 

tamaño y la capacidad de detección de la técnica de ultrasonidos sin contacto en función 

del estado del producto, se realizó un ANOVA multifactorial. Para ambos modelos 

ANOVA, se realizó la comparación de medias mediante el cálculo de los intervalos de 

Diferencia Mínima Significativa (LSD) de Fisher con un nivel de confianza del 95%. Los 

residuos de los modelos ANOVA se computaron como la diferencia entre los valores 

experimentales (parámetros ultrasónicos) y los calculados por el modelo y 

posteriormente fueron sometidos a diferentes contrastes estadísticos para verificar su 

normalidad (mediante la prueba de Shapiro-Wilk), la homocedasticidad residual 

(evaluada mediante un modelo de Regresión Lineal Múltiple sobre los residuos al 

cuadrado) e independencia residual (mediante la prueba de Ljung-Box). El fallo de 

cualquiera de estas pruebas invalida los modelos ANOVA para aplicaciones de inferencia 

(Aparisi & García-Díaz, 2007). El análisis estadístico se llevó a cabo utilizando 

StatGraphics Centurion XVII (StatGraphics Technologies Inc, USA).  
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3.7 ANÁLISIS MULTIVARIANTE 

Con el objetivo de desarrollar de forma preliminar, debido al bajo número de muestras 

empleadas, un modelo matemático capaz de detectar de manera precisa la presencia de 

cuerpos extraños en las gelatinas de control y con cuerpos extraños, se formuló una 

estrategia híbrida que combinó el uso de modelos estadísticos multivariantes y de 

técnicas de aprendizaje automático supervisado para lograr este objetivo (Collazos-

Escobar et al., 2024; Wang et al., 2023). En ese sentido, el modelo de regresión en 

mínimos cuadrados parciales-versión discriminante (PLS-DA) fue considerado como 

técnica de exploración y de reducción de la dimensionalidad. Además, la proyección de 

las señales ultrasónicas en la estructura latente del modelo PLS-DA sirvió como base para 

el entrenamiento de dos técnicas de aprendizaje automático supervisado en variables 

latentes como las Maquinas de Soporte Vectorial (LV-SVM) y el Bosque aleatorio (LV-RF).  

El modelo PLS-DA fue calibrado empleando las señales ultrasónicas en el dominio 

temporal (obtenidas en la sección 2.4). Dichas señales fueron recortadas en el rango de 

1800-5000 puntos (para reducir la dimensionalidad de las señales y así evitar la 

modelización de línea base) y se adicionó una variable ficticia que describió el estado del 

producto (Sólido = 0 y Líquido = 1) en la modelización multivariante. Al tratarse de un 

problema de detección de muestras de control y con cuerpos extraños, se calibró el 

modelo PLS-DA para la clasificación binaria (control = 0 y cuerpos extraños = 1) de estos 

dos tipos de muestras. 

La selección del número óptimo de componentes PLS-DA (PLSC) se llevó a cabo mediante 

la validación cruzada por capetas (K-fold) empleando K=5, para evitar el 

sobreentrenamiento del modelo PLS-DA (Barrera Jiménez et al., 2023). La métrica de 

importancia de la variable para la proyección (VIPs) se utilizó para cuantificar la 

importancia global de la señal ultrasónica y del estado del producto en la clasificación de 

las muestras. Además, el coeficiente de determinación para el conjunto de datos de 

calibración (R2) y para el conjunto de datos de validación cruzada (Q2) fueron 

consideradas las métricas de bondad de ajuste del PLS-DA para determinar el número 

óptimo de componentes. La estimación de parámetros del modelo PLS-DA se realizó 

mediante el algoritmo de mínimos cuadrados parciales no iterativos (NIPALS) y el 

procedimiento de cálculo se realizó con el paquete ropls (Thévenot et al., 2015) del 

programa estadístico R Core Team 2023 (R Development Core Team , USA). 

Una vez optimizado el modelo PLS-DA, se empleó la proyección de las muestras de 

control y con cuerpos extraños en el espacio latente (puntuaciones) como los regresores 

de las técnicas de aprendizaje automático. Para la calibración de LV-SVM se consideró la 

función kernel rbfdot, el tipo nu-svc, un parámetro de regularización (C) de 500.5 y una 

épsilon (Ep) igual a 0.1 (Karatzoglou et al., 2004). Para la calibración de LV-RF se 

emplearon 100 árboles aleatorios considerando un Mtry (número de predictores 

muestreados para dividir en cada nodo de los árboles de clasificación) igual a la raíz 

cuadrada del número óptimo de componentes PLS-DA. El procedimiento computacional 

de calibración de LV-SVM se realizaron con la función kernlab y randomForest, 
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respectivamente, del entorno del programa estadístico R Core Team 2023 (R 

Development Core Team , USA). 

Los clasificadores en variables latentes fueron entrenados utilizando el 75% de los datos 

experimentales y la validación de estos se realizó con el 25% restante de los datos. Este 

procedimiento fue realizado 100 veces, realizando particiones aleatorias de los datos 

experimentales en los conjuntos de datos descritos anteriormente. 

La bondad de clasificación de los modelos de aprendizaje automático supervisado para 

ambos conjuntos de datos (entrenamiento y validación) se evaluó mediante el cálculo 

de la matriz de confusión (CFM, Ecuación 6), la cual sirvió como base para determinar la 

precisión general de los modelos (Acc, Ecuación 7), la sensibilidad (Se, Ecuación 8) y la 

especificidad (Sp, Ecuación 9) (Craig et al., 2018). Valores de Acc cercanos a 100% y de Se 

y SP cercanos a 1 indicaron una elevada capacidad de clasificación (Debón & Garcia-Díaz, 

2012). 

CFM = Predicho 

Real

[
. Cuerpos extraños Control

Cuerpos extraños VP FP
Control FN VN

]
                (6) 

Acc(%) =
VP+VN

VP+VN+FP+FN
∗ 100          (7) 

Se =
VP

VP+FN 
      (8) 

Sp =
VN

VN+FP
      (9) 

Donde, VP y VN son los verdaderos positivos (muestras realmente con cuerpos extraños 

clasificadas como muestras con cuerpos extraños) y verdaderos negativos (muestras de 

control reales clasificadas como muestras de control). Mientras que FP y FN son los falsos 

positivos (muestras de control reales clasificadas como muestras con cuerpos extraños) 

y falsos negativos (muestras realmente con cuerpos extraños clasificadas como muestras 

control), respectivamente.  
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4. RESULTADOS Y DISCUSIÓN 

4.1. CARACTERIZACIÓN DE GELATINAS EN ESTADO SÓLIDO Y LÍQUIDO 
 

En primer lugar, se abordó la capacidad de los ultrasonidos sin contacto para discriminar 

entre las gelatinas en estado sólido y líquido. Para ello se utilizaron las 50 señales 

ultrasónicas medidas en las muestras control (25 en estado sólido y 25 en estado 

líquido). En la Figura 7, se muestra un ejemplo de las señales en las gelatinas en estado 

sólido y líquido.  

Figura 7. Señales ultrasónicas de gelatinas comerciales de control en estado sólido (A) y 

líquido (B) 

Como se puede observar en la Figura 7, las señales ultrasónicas obtenidas para las 

gelatinas en forma líquida y sólida fueron muy similares, aunque se observaron 

diferencias relacionadas con el nivel de energía. Así, se puede observar menores niveles 

de energía en las muestras líquidas en comparación con las muestras sólidas. 

Generalmente, las ondas ultrasónicas son rápidamente atenuadas en líquidos en 

comparación con medios sólidos, es por ello por lo que las ondas superficiales a 

frecuencias ultrasónicas en líquidos resultan de poco interés para el análisis de alimentos 

(Majumdar et al., 1998). La mayor atenuación de las ondas ultrasónicas en líquidos se 

debe principalmente a la viscosidad, compresibilidad, interacciones moleculares, efectos 

térmicos y dispersión que son más significativos que en sólidos. La combinación de los 

factores previamente mencionados provoca, en última instancia, que las ondas 

ultrasónicas pierdan energía más rápidamente en los líquidos (Kinsler et al., 2000). 

En la Tabla 2, se muestra la media de los parámetros ultrasónicos relacionados con la 

energía (PP, ENG y INT) para las muestras control de las gelatinas en estado sólido y 

líquido. Como se puede observar, en la Tabla 2, los resultados de la estimación de los 

parámetros ultrasónicos manifestaron que las todas las gelatinas de control en estado 

sólido atenuaron en menor medida la onda ultrasónica en comparación con las de 

estado líquido. Los porcentajes de reducción de los parámetros ultrasónicos en el caso 

de las gelatinas de control en estado líquido comparándolas con la de estado sólido 

fueron del 20% en PP, 42% en ENG y 24% en INT. 



16 
 

Las mayores diferencias de porcentajes de reducción se dan para el parámetro ENG y las 

menores para el parámetro PP. 

Tabla 2. Parámetros ultrasónicos relacionados con la energía en gelatinas de control en 

estado sólido y líquido 

Tipo Estado PP (V) ENG (V2) INT (V µs) 

Control 
Sólido 2.87 ± 0.13 195 ± 18 223 ± 10 

Líquido 2.32 ± 0.09 113 ± 25 169 ± 25 
PP (distancia pico pico), ENG (norma al cuadrado) e INT (integral). Los resultados fueron expresados como 

valores medios ± desviación estándar.  

 

Los resultados del modelo ANOVA de una vía para analizar el efecto del estado de la 

gelatina comercial de control sobre los parámetros ultrasónicos relacionados con la 

energía se observan en la Figura 8. Se observó que todos los parámetros ultrasónicos 

mostraron diferencias significativas (p<0.05) en función del estado de la gelatina. 

Figura 8. Resultados estadísticos del modelo ANOVA (Análisis de Varianza) de un factor 

para analizar el efecto del estado de la gelatina sobre los parámetros ultrasónicos 

relacionados con la energía 

Los resultados (Figura 8) mostraron estar alineados coherentemente con los obtenidos 

mediante el análisis de la Tabla 1: el estado de la materia de las muestras de control 

influye en los tres parámetros ultrasónicos calculados (PP, ENG y INT). En la Figura 8 se 

observan los valores medios y los intervalos LSD para cada uno de los parámetros 

ultrasónicos. En todos los apartados de la figura 8, se observan diferencias 

estadísticamente significativas que indican que todos los parámetros ultrasónicos 
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estudiados son mayores en el caso de la gelatina en estado sólido en comparación con 

la gelatina en estado líquido.  Fariñas et al. (2021) manifestaron que las diferencias en 

los parámetros ultrasónicos en hamburguesas variaron en función del estado de la 

fracción grasa. Así, se evidenció una mayor atenuación cuando la grasa estaba en estado 

líquido, lo que coincide con lo observado en las gelatinas. 

 

4.2. INFLUENCIA DE LOS CUERPOS EXTRAÑOS EN LOS PARÁMETROS 

ULTRASÓNICOS 
 

Las señales ultrasónicas experimentales de las gelatinas de control en estado sólido y 

líquido y de las gelatinas contaminadas con piezas metálicas, plásticas y biológicas se 

observan en las figuras 9, 10 y 11. 

Figura 9. Señales ultrasónicas de gelatinas comerciales de control en estado sólido (A) y 

líquido (D) y señales de gelatinas en estado sólido con piezas metálicas de diámetro 0.5 

cm (B) y 0.25 cm (C) y gelatinas en estado líquido con piezas metálicas de diámetro 0.5 

cm (E) y 0.25 cm (F) 
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Figura 10. Señales ultrasónicas de gelatinas comerciales de control en estado sólido (A) 

y líquido (D) y señales de gelatinas en estado sólido con piezas plásticas de tamaño 0.5 

× 0.5 cm (B) y 0.25 × 0.25 cm (C) y gelatinas en estado líquido con piezas plásticas de 

tamaño 0.5 × 0.5 cm (E) y 0.25 × 0.25 cm (F) 

Figura 11. Señales ultrasónicas de gelatinas comerciales de control en estado sólido (A) 

y líquido (C) y señales de gelatinas con moscas de tamaño envergadura 0.5 × 0.7 cm en 

estado sólido (B) y líquido (D) 

Como puede observarse en las Figuras 9-11, la presencia del cuerpo extraño conlleva un 

descenso del nivel de energía de la señal para todos los casos independientemente del 

tamaño del cuerpo, su tipología o el estado de la gelatina. La presencia del cuerpo 

extraño supone una barrera para la transmisión de la energía ultrasónica ya que tiene 

unas propiedades acústicas diferentes a la gelatina. Esto hace que parte de la energía de 

la señal se refleje, se absorba o se refracte lo que redunda en un descenso de la energía 

de la señal (Payne et al., 2023) . (Cho & Irudayaraj, 2003) también comprobaron como la 
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presencia de un objeto extraño podría atenuar la energía ultrasónica, resultando en una 

transferencia deficiente, lo que condicionaba la aplicación industrial de este tipo de 

técnicas.  

En el presente trabajo, no se ha abordado el análisis de la velocidad de transmisión de 

las ondas, aunque la presencia del cuerpo extraño también puede afectarle. Debido al 

gran impacto del cuerpo extraño en la energía de la señal en el dominio temporal, 

tampoco ha sido necesario abordar el análisis espectral de la señal. Así, los parámetros 

relacionados con la energía (Tabla 3) pueden considerarse suficientes para la detección 

de cuerpos extraños en entornos industriales y además, presentan necesidades de 

computación son bajas tanto en relación con el tiempo de cálculo como a la complejidad 

de los algoritmos (Karki et al., 2022). 

De cara a analizar el impacto del tipo de cuerpo extraño, tamaño y estado de la gelatina, 

en la Tabla 3 se presentan los resultados de la estimación de los parámetros ultrasónicos 

(PP, ENG y INT) para las muestras control y con cuerpos extraños. 

Tabla 3. Parámetros ultrasónicos relacionados con la energía en gelatinas de control y 

con cuerpos extraños de diferente tamaño en estado sólido y líquido 

Tipo Estado Tamaño PP (V) ENG (V2) INT (V µs) 

Control 
Sólido 

– 
2.87 ± 0.13 195 ± 18 223 ± 10 

Líquido 2.32 ± 0.09 113 ± 25 169 ± 25 

Metal 

Sólido 
d=0.5 cm 2.14 ± 0.16 71± 18 124 ± 16 

d=0.25 cm 2.31 ± 0.11 102 ± 6 151 ± 6 

Líquido 
d=0.5 cm 1.67 ± 0.13 19 ± 8 64 ± 15 

d=0.25 cm 1.66 ± 0.14 19 ± 7 63 ± 8 

Plástico 

Sólido 
0.5×0.5 cm 2.44 ± 0.09 88 ± 15 130 ± 10 

0.25×0.25 cm 2.55 ± 0.09 127± 18 172 ± 16 

Líquido 
0.5×0.5 cm 1.93 ± 0.07 33 ± 10 84 ± 13 

0.25×0.25 cm 2.16 ± 0.02 78 ± 10 134 ± 13 

Mosca 
Sólido 

0.5-0.7 cm 
2.17 ± 0.09 64 ± 11 116 ± 10 

Líquido 1.94 ± 0.08 31 ± 5 82 ± 8 
PP (distancia pico pico), ENG (norma al cuadrado) e INT (integral). Los resultados fueron expresados como 

valores medios ± desviación estándar.  

En primer lugar, se observa en la Tabla 3 como todos los valores relativos a los 

parámetros ultrasónicos calculados para los diferentes cuerpos extraños han disminuido 

con respecto a las muestras de control. También puede observarse como los valores son 

menores para el caso de las gelatinas líquidas debido a la mayor atenuación de la matriz, 

tal y como se ha comentado en el apartado 3.1. Así, los porcentajes de reducción de los 

parámetros ultrasónicos respecto a las muestras de control en función del tipo de 

material extraño analizado fueron los siguientes: 

• Arandela metálica diámetro (d) = 0.5 cm en gelatina sólida :25% en PP, 64% en 

ENG y 44% en INT. 
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• Arandela metálica d=0.25 cm en gelatina sólida :20% en PP, 48% en ENG y 33% 

en INT. 

• Arandela metálica d=0.5 cm en gelatina líquida :42% en PP, 90% en ENG y 71% 

en INT. 

• Arandela metálica d=0.25 cm en gelatina líquida :28% en PP, 83% en ENG y 63% 

en INT. 

• Material plástico 0.5 x 0.5 cm en gelatina sólida: 28% en PP, 22% en ENG y 23% 

en INT. 

• Material plástico 0.25 x 0.25 cm en gelatina sólida: 15% en PP, 22% en ENG y 23% 

en INT. 

• Material plástico 0.5 x 0.5 cm en gelatina líquida: 11% en PP, 83% en ENG y 62% 

en INT. 

• Material plástico 0.25 x 0.25 cm en gelatina líquida: 17% en PP, 31% en ENG y 

21% en INT. 

• Mosca en gelatina sólida: 24% en PP, 67% en ENG y 48% en INT. 

• Mosca en gelatina líquida: 16% en PP, 72.% en ENG y 52% en INT. 

El cuerpo extraño que tuvo un mayor efecto en la reducción de los parámetros 

ultrasónicos de las gelatinas líquidas fue la arandela metálica de tamaño medio, en 

cambio, el cuerpo extraño que produjo un mayor efecto en la reducción de los 

parámetros ultrasónicos de las gelatinas sólidas fue la mosca. Por el contrario, el cuerpo 

extraño que tuvo un menor efecto en la reducción de los parámetros ultrasónicos de las 

gelatinas líquidas y sólidas fue el material plástico de tamaño pequeño. 

La media de reducción para cada uno de los parámetros ultrasónicos fue la siguiente: 

• PP: 23% 

• ENG: 60% 

• INT: 43% 

Se puede observar como el parámetro más afectado fue ENG, seguido por INT. El 

parámetro PP fue el menos afectado por la incorporación de cuerpos extraños en el 

producto. 

La media de reducción para cada uno de los parámetros ultrasónicos dependiendo para 

cada uno de los diferentes cuerpos extraños fue la siguiente: 

• Metal 

o PP: 32% 

o ENG: 73% 

o INT: 55% 

 

• Plástico 

o PP: 21% 

o ENG: 58% 

o INT: 42% 
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• Mosca 

o PP: 28% 

o ENG: 76% 

o INT: 56% 

 

En la Tabla 4 se muestra el resumen del Análisis de Varianza (ANOVA) multifactorial para 

los parámetros ultrasónicos. Se puede observar que la influencia de todos los factores 

fue significativa (p<0.05) (estado de la gelatina, tamaño del cuerpo extraño y tipo de 

cuerpo extraño) ya que el Valor-P para todas ellas ha sido menor a 0.05. En la Tabla 4 

también se incluyen las interacciones entre variables que han demostrado tener un 

efecto estadísticamente significativo (p<0.05) en los parámetros ultrasónicos. La única 

interacción que provocó diferencias estadísticamente significativas ha sido “Estado x 

Tipo”, ya que es la única que aparece reflejada en la tabla con un Valor-P menor a 0.05. 

Las interacciones “Tamaño x Tipo” y “Estado x Tamaño” no aparecen reflejadas en la 

tabla ya que su Valor-P es mayor a 0.05 y por tanto, su efecto no fue significativo.  
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Tabla 4. Resultados estadísticos ANOVA (Análisis de Varianza) multifactorial para el 

análisis de la influencia del tipo de cuerpo extraño, tamaño y estado de la gelatina sobre 

los parámetros ultrasónicos relacionados con la energía. 

PP (V) 

Fuente Suma de cuadrados Gl Cuadrado medio Razón-F Valor-P 

EFECTOS PRINCIPALES 

 Estado 2.62 1 2.62 233.21 0 

 Tamaño 0.12 1 0.12 11.18 1.15×10–3 

 Tipo 3.28 3 1.09 97.37 1.00×10-4 

INTERACCIONES 

 Estado × Tipo 0.16 3 0.06 4.93 4.41×10–3 

RESIDUOS 0.58 52 0.01   

TOTAL (CORREGIDO) 7.04 60    

ENG (V2) 

Fuente Suma de cuadrados Gl Cuadrado medio Razón-F Valor-P 

EFECTOS PRINCIPALES 

Estado 45720.12 1 45720.12 148.59 0 

Tamaño 6631.19 1 6631.19 21.55 0 

Tipo 87705.83 3 29235.31 95.02 0 

INTERACCIONES 

Estado × Tipo 3316.51 3 1105.5 3.59 0.02 

RESIDUOS 15999.53 52 307.68   

TOTAL (CORREGIDO) 153221.24 60    

INT (V µs) 

Fuente Suma de cuadrados Gl Cuadrado medio Razón-F Valor-P 

EFECTOS PRINCIPALES 

Estado 34560.91 1 34560.92 105.05 0 

Tamaño 6297.13 1 6297.13 19.14 0 

Tipo 76016.62 3 25338.94 77.02 0 

INTERACCIONES 

Estado × Tipo 2784.08 3 928.03 2.82 0.04 

RESIDUOS 17107.41 52 328.98   

TOTAL (CORREGIDO) 142312.42 60    
PP (distancia pico pico), ENG (norma al cuadrado), INT (integral) y Gl (grados de libertad del modelo de 

análisis de varianza).  

En las Figuras 12, 13 y 14 se puede observar una representación visual de la media de 

cada nivel del factor y su intervalo LSD en los que se expone de forma gráfica las 

diferencias estadísticamente significativas (p<0.05) entre los diferentes grupos para los 

parámetros ultrasónicos (PP, ENG y INT). Es interesante resaltar que la variable PP, a 

pesar de que fue la que menor impacto presentó por la presencia del cuerpo extraño, es 

la que permite una mejor separación para los tipos de cuerpos extraños (Figura 12A). 

Otro aspecto llamativo resulta que el impacto del metal es mucho mayor cuando la 

muestra está en estado líquido que sólido. Este hecho se debe a que la diferencia de 

impedancias entre la gelatina y el metal, y por tanto la pérdida de energía, es mayor 
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cuando está en estado líquido que sólido. Es decir, la gelatina se parece más al metal 

cuando está en estado sólido, por lo tanto, el impacto del cuerpo extraño en la 

transmisión de la energía es menor que en estado líquido. Correia et al., (2008) también 

evidenciaron que la textura de la carne de pollo influyó en la detección de cuerpos 

extraños mediante técnicas ultrasónicas. 

 

 

 

 

 

 

 

 

 

 

Figura 12. Resultados estadísticos del modelo ANOVA (Análisis de Varianza) 

multifactorial para analizar el efecto del estado de la gelatina, el tipo de cuerpo extraño 

y tamaño sobre el parámetro ultrasónico PP (distancia pico pico). Influencia del tipo de 

cuerpo extraño (A), influencia del estado de la gelatina (B), tamaño del cuerpo extraño 

(C) e interacción entre el tipo de cuerpo extraño y el estado de la gelatina (D). 
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Figura 13. Resultados estadísticos del modelo ANOVA (Análisis de Varianza) 

multifactorial para analizar el efecto del estado de la gelatina, el tipo de cuerpo extraño 

y tamaño sobre el parámetro ultrasónico ENG (norma al cuadrado). Influencia del tipo 

de cuerpo extraño (A), influencia del estado de la gelatina (B), tamaño del cuerpo extraño 

(C) e interacción entre el tipo de cuerpo extraño y el estado de la gelatina (D) 

 

 

Figura 14. Resultados estadísticos del modelo ANOVA (Análisis de Varianza) 

multifactorial para analizar el efecto del estado de la gelatina, el tipo de cuerpo extraño 

y tamaño sobre el parámetro ultrasónico INT (integral). Influencia del tipo de cuerpo 

extraño (A), influencia del estado de la gelatina (B), tamaño del cuerpo extraño (C) e 

interacción entre el tipo de cuerpo extraño y el estado de la gelatina (D)  
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4.3 DETECCIÓN MULTIVARIANTE DE CUERPOS EXTRAÑOS EN GELATINAS 
 

Los resultados del ajuste del modelo PLS-DA para el conjunto de datos de calibración y 

validación cruzada y la proyección de las señales ultrasónicas de las muestras de control 

y con cuerpos extraños en las dimensiones de máximo poder discriminante del modelo 

PLS-DA se observan en la Figura 15. 

Figura 15. Resultados de la validación cruzada del modelo de regresión en mínimos 

cuadrados parciales-versión discriminante (PLS-DA) (A) y proyección de las 

observaciones en las dimensiones latentes de máximo poder discriminante para la 

detección cuerpos extraños (B, C) 

Como se puede observar en la Figura 15A, el proceso de optimización del modelo PLS-

DA mediante el procedimiento de validación cruzada (descrito en la sección 2.7) 

manifestó que el numero óptimo de componentes PLS para maximizar el Q2 (99.1%) 

fueron 18 PLSC, a pesar de que el máximo R2 para el conjunto de calibración de obtuvo 

con 7 PLSC. Este resultado sugiere que la capacidad predictiva del modelo PLS-DA para 

clasificar correctamente observaciones desconocidas, incrementó conforme se 

incluyeron más componentes en el modelo a pesar haber alcanzado un máximo en la 

predicción de observaciones conocidas del conjunto de datos de calibración.  

La proyección de las señales ultrasónicas en las dos principales dimensiones de máximo 

poder discriminante (PLSC1 vs PLSC2, Figura 15B y 15C) resultaron ser adecuadas para la 

discriminación de las señales de las gelatinas control y las gelatinas con presencia de 

cuerpos extraños. Como se puede observar en la Figura 15B, las muestras de control 

fueron fundamentalmente discriminadas mediante la componente PLSC1, la cual explicó 

el 4% de la covariabilidad de la matriz de datos ultrasónicos con la variable respuesta 

categórica. Adicionalmente, la componente PLSC2 (5% covariabilidad explicada) 

promovió que las observaciones con cuerpos extraños se discriminaran en los valores 

positivos de esta componente. Por tanto, ambas componentes fueron valiosas para 

separar las gelatinas contaminadas de las muestras de control.  

Los resultados estadísticos de la detección de cuerpos extraños mediante los modelos 

de clasificación construidos a partir del uso de las puntuaciones del modelo PLS-DA con 

18 PLSC se presentan en la Tabla 5. Los resultados fueron expresados separadamente 

para los conjuntos de entrenamiento (75%) y validación (25%) para cada clasificador 

usado. 
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Tabla 5. Técnicas de aprendizaje automático supervisado en variables latentes 

entrenadas usando el 75% de los datos experimentales y validación estadística de 

modelos empleando el 25% de los datos experimentales.  

 
LV-SVM LV-RF 

Real Real 

Predicho 
Cuerpos 
extraños 

Control 
Cuerpos 
extraños 

Control 

Cuerpos 
extraños 

Entrenamiento 
VP = 38 ± 2 
Validación 
VP = 12 ± 2 

Entrenamiento 
FP = 0 ± 0 
Validación 
FP = 0 ± 0 

Entrenamiento 
VP = 38 ± 2 
Validación 
VP = 12 ± 2 

Entrenamiento 
FP = 0 ± 0 
Validación 
FP = 0 ± 0 

Control 

Entrenamiento 
FN = 0 ± 0 
Validación 
FN = 0 ± 0 

Entrenamiento 
VN = 37 ± 2 
Validación 

VN = 13 ± 2 

Entrenamiento 
FN = 0 ± 0 
Validación 
FN = 1 ± 1 

Entrenamiento 
VN = 37 ± 2 
Validación 

VN = 12 ± 2 

HO 

FK: rbfdot 
Tipo: nu-svc 

C: 500.5 
Ep =0.1 

Numero de árboles = 100 
Mtry = 4.24 

Capacidad de 
detección 

Entrenamiento 
Acc(%)= 100 ± 0 

Se= 1 ± 0 
Sp= 1± 0 

Entrenamiento 
Acc(%)= 100 ± 0 

Se= 1 ± 0 
Sp= 1± 0 

Validación 
Acc(%)= 99.9 ± 0.1 

Se= 0.99 ± 0.01 
Sp= 1 ± 0 

Validación 
Acc(%)= 96.4 ± 3.6 

Se= 0.95 ± 0.05 
Sp= 1 ± 0 

LV-SVM (Maquinas de soporte vectorial en variables latentes), LV-RF (Bosque aleatorio en variables 

latentes), VP (Verdadero positivo), VN (Verdadero negativo), FP (Falso positivo), FN (Falso negativo), Acc 

(Precisión general), Se (Sensibilidad), Sp (especificidad), HO (hiperparámetros), FK (Función Kernel), C 

(Parámetro de regularización), Mtry (número de predictores muestreados para dividir en cada nodo de los 

árboles de clasificación). Los resultados fueron expresados como valores medios ± desviación estándar.  

Los resultados estadísticos (Tabla 5) mostraron una elevada capacidad de detección de 

cuerpos extraños y de muestras de control debido a que el Acc vario entre 96.4% y 100%, 

Se estuvo entre 0.95 y 1 y el Sp fue igual a 1, para los conjuntos de entrenamiento y 

validación. Los resultados de la bondad de clasificación pusieron de manifiesto que 

ambas técnicas de aprendizaje automático supervisado y la estrategia hibrida de 

calibración de estos considerando el PLS-DA como base mostraron un rendimiento 

notable en la detección de las señales ultrasónicas de control y con cuerpos extraños. 

Se observó que, para el conjunto de datos de entrenamiento, las técnicas LV-SVM y LV-

RF clasificaron correctamente todas las señales de control y cuerpos extraños (Acc= 

100%, Se= 1 y Sp= 1). Mientras que los resultados estadísticos para el conjunto de datos 

de validación cuantificaron la capacidad de los clasificadores entrenados para predecir 

señales desconocidas. Como se puede observar (Tabla 5), la capacidad de predicción de 

todas las técnicas disminuyó para el conjunto de validación. La bondad de clasificación 
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de LV-RF disminuyó en comparación con los resultados de entrenamiento (Acc= 96.4% y 

Se= 0.95) debido a un aumento de señales con cuerpos extraños incorrectamente 

clasificadas (FN= 1±1). Por otro lado, el rendimiento de clasificación de LV-SVM 

disminuyó ligeramente para el conjunto de datos de validación (Acc= 99.9% y Se= 0.99). 

Estos resultados manifestaron la robustez de LV-SVM para clasificar correctamente las 

muestras comparado con LV-RF.  

Los resultados obtenidos en el presente trabajo fueron similares a los obtenidos por 

Zhao et al. (2003) en la detección de fragmentos de vidrio en bebidas envasadas en 

recipientes de vidrio mediante la integración de ultrasonidos con contacto y redes 

neuronales artificiales (ANN). Estos autores, considerando un conjunto de datos 

entrenados (n = 60 señales) y de validación (n = 20 señales), obtuvieron un Acc mayor al 

95% y afirmaron que la combinación de los ultrasonidos con contacto y las técnicas de 

aprendizaje automático supervisado resultó ser factible para la inspección de la calidad 

de los alimentos en tiempo real. Sin embargo, el uso de ultrasonidos con contacto limita 

las aplicaciones industriales de este sistema para la monitorización estadística de la 

calidad, limitaciones que podrían ser superadas con técnicas no invasivas y no 

destructivas como los ultrasonidos sin contacto.  
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5. CONCLUSIONES 
 

Las principales conclusiones que se pueden obtener del presente trabajo se detallan a 

continuación: 

• El estado de la gelatina influyó en la medida ultrasónica así, se observó que las 

gelatinas líquidas, presentaron menores niveles de energía ultrasónica. Así, las 

diferencias de los parámetros ultrasónicos entre muestras sólidas y líquidas 

oscilaron entre el 20% (PP) y el 42% (ENG). 

• La presencia de cuerpos extraños influyó en la medida ultrasónica así, se observó 

que las gelatinas que contenían cuerpos extraños conllevaron menores niveles 

de energía ultrasónica que las gelatinas de control. La disminución de los 

parámetros ultrasónicos osciló entre el 23% (PP) y el 60% (INT).  

• El cuerpo extraño que tuvo un mayor efecto fue la arandela metálica de tamaño 

medio. En cambio, en las gelatinas líquidas, la mosca fue el cuerpo extraño que 

más influyó en los parámetros ultrasónicos. Mientras que el plástico de tamaño 

pequeño fue el que menos influyó en las medidas ultrasónicas. Resultó evidente 

que el tamaño del cuerpo extraño influyó en la medida de los parámetros 

ultrasónicos, produciendo una menor atenuación en el caso de que el objeto 

presente en las gelatinas fuese de tamaño pequeño. 

• Las tres variables analizadas (tipo de cuerpo extraño, tamaño del cuerpo extraño 

y estado de la materia de la muestra) han demostrado tener un efecto 

significativo (p<0.05) para cada uno de los parámetros ultrasónicos (PP, ENG, 

INT).  

• Las LV-SVM resultaron ser el modelo más robusto para detectar la presencia y 

ausencia de cuerpos extraños en gelatinas comerciales mediante el uso de 

ultrasonidos sin contacto. Este enfoque resulta una herramienta valiosa para la 

integración en un sistema de monitorización, facilitando la clasificación de las 

gelatinas de control y aquellas que contienen piezas metálicas, plásticas y/o 

insectos. Se deben de realizar trabajos futuros con un mayor número de muestras 

con el objetivo de validar los resultados obtenidos en la capacidad de 

clasificación de este modelo multivariante. 

La conclusión general obtenida a través del desarrollo del presente trabajo pone de 

manifiesto la utilidad de las técnicas ultrasónicas sin contacto para la detección de 

cuerpos extraños de diferente naturaleza y tamaño en gelatinas en estado sólido y 

líquido de forma totalmente no invasiva. Futuros trabajos deben determinar los límites 

de detección de la tecnología de ultrasonidos sin contacto para inspeccionar alimentos 

con cuerpos extraños de menor tamaño. Además, se debe evaluar esta técnica para la 

detección de cuerpos extraños de otras naturalezas, como rocas, vidrios e incluso 

material biológico del personal de procesado en planta, como uñas y cabellos los cuales 

podrían contaminar las gelatinas durante la manipulación y/o el proceso de envasado. 

Esto será esencial para desarrollar un prototipo industrial robusto que pueda usarse para 

la monitorización a nivel industrial.   
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Anejo I. Relación del trabajo con los Objetivos de Desarrollo 
Sostenible de la agenda 2030 Anexo al Trabajo de Final de Grado 

A. Indicar el grado de relación del trabajo con los Objetivos de Desarrollo Sostenible (ODS). 

 Alto Medio Bajo No procede 

ODS 1. Fin de la pobreza    X 
ODS 2. Hambre cero    X 
ODS 3. Salud y bienestar X    
ODS 4. Educación de calidad    X 
ODS 5. Igualdad de género    X 
ODS 6. Agua limpia y saneamiento    X 
ODS 7. Energía asequible y no contaminante    X 
ODS 8. Trabajo decente y crecimiento económico X    
ODS 9. Industria, innovación e infraestructuras X    
ODS 10. Reducción de las desigualdades    X 
ODS 11. Ciudades y comunidades sostenibles    X 
ODS 12. Producción y consumo responsables X    
ODS 13. Acción por el clima    X 
ODS 14. Vida submarina    X 
ODS 15. Vida de ecosistemas terrestres    X 
ODS 16. Paz, justicia e instituciones sólidas    X 
ODS 17. Alianzas para lograr objetivos.    X 

 
B. Describir brevemente la alineación del TFG con los ODS, marcados en la tabla anterior, 

con un grado alto. 

El presente trabajo guarda un grado de relación alto con los ODS 3,8,9,10. A continuación se 
expone una serie de motivos que justifican la relación del trabajo con cada uno de los ODS 
mencionados: 
 
ODS 3: Salud y Bienestar 
La tecnología de ultrasonidos para detectar cuerpos extraños en gelatinas puede contribuir en gran 
medida a la seguridad alimentaria. Detectar cuerpos extraños en alimentos asegura que estos 
productos sean seguros para su consumo, reduciendo el riesgo de enfermedades o daños y 
garantizando la salud y el bienestar de los consumidores. 
 
ODS 8: Trabajo Decente y Crecimiento Económico 
Implementar tecnologías avanzadas como la detección mediante el uso ultrasonidos puede 
mejorar la eficiencia en la producción de alimentos, garantizando productos elevada calidad. Esta 
situación puede conducir a un crecimiento económico sostenible y generar empleo en sectores 
relacionados con el uso de esta tecnología. 
 
ODS 9: Industria, Innovación e Infraestructura 
El uso de ultrasonidos en la detección de cuerpos extraños implica el desarrollo de tecnologías 
avanzadas en la industria alimentaria. Esto fomenta la innovación y el avance tecnológico, 
mejorando las infraestructuras de producción y creando procesos más seguros y eficientes. 
 



 

2 
 

ODS 12: Producción y Consumo Responsables 
La detección temprana de cuerpos extraños mediante ultrasonidos puede ayudar a reducir el 
desperdicio de alimentos, al evitar que lotes enteros sean desechados debido a la contaminación. 
Esto contribuye a prácticas de producción más sostenibles y responsables, alineadas con el objetivo 
de minimizar el impacto ambiental. 


