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Abstract

Poultry meat industry requires intelligent systems for achieving non-invasive, non-
destructive and real-time detection of bone fragments (BF). Therefore, the main aim of this
study was to assess the feasibility of using ultrasound imaging, multivariate image analysis
(MIA)-based multivariate statistical process control (MSPC) and Latent Variable based
Machine Learning (LV-ML) to detect varying-size BF within boneless and skinless chicken
breast fillets. BF of different sizes (2.0 x 1.5 ¢cm, 2.0 x 1.0 cm, 1.5 x 0.3 cm, 1.0 X 0.3 cm,
and 0.5 x 0.3 cm) were inserted into the chicken breast fillets in five different locations.
Contact ultrasound images were acquired in the control (C) and out-control (OC, with bone)
chicken breast fillets, by scanning the breast’s surface, using transmission mode contact
ultrasound sensors (I MHz), following a pre-established pattern. Energy-magnitude and
energy-distribution ultrasound parameters were computed at pixel level considering three
approaches: time-domain (TDA), frequency domain (FDA), and the combination of time and
frequency domains (TFDA). Additionally, the time-frequency domains block-scale hard
(TFDABH) and time-frequency domains block-scale soft (TFDABS) were also assessed. For
each approach, MIA-SPC procedure was followed considering the Principal Component
Analysis (PCA) as basis latent-space. From PCA model, the Residual Sum Squares (RSS)
and Hotelling’s T-square (T?) control statistics were used to classify the C and OC images
projected on the PCA latent structure. In the case of LV-ML models, seven ML techniques
were trained (75%) and validated (25%) to classify the C and OC images projected on the
PCA latent eigenspace. Furthermore, the Mean-Decrease Accuracy (MDA )-Random Forest
(RF)-Variable Selection (VS) framework was applied to identify and rank the most relevant
LVs, thereby maximizing the detection performance of a new set of Latent Variable-based
Machine Learning (RF-VS-LV-ML) classifiers. Partial Least Squares Regression (PLSR)
was then used as a statistical tool for modeling and multi-objective optimization, enabling
the exploration of the relationships between ML model hyperparameters, number of LVs
tested, and time-frequency block-scaled domains data approaches. Results demonstrated that
the presence of bone fragments within chicken breast fillets led to alterations in the energy-
magnitude (avg. amplitude decrease from 81.6% to 52.6%, depending on the bone size) and
energy-distribution ultrasound parameters (avg. variance decrease from 97.9% to 70.6%
depending on the bone size). The RSS statistic achieved the best classification performance
(accuracy of TDA, FDA and TFDA>95%) in distinguishing between C and OC images.
Furthermore, the combined use of LV-ML models, RF-VS-LV-ML and PLSR multi-
objective optimization led to determine the best performing RF-VS-LV-RF-FDA model with
a classification accuracy above 99% in both training and validation datasets, while
maintaining reasonably computational time for training process. These results highlight the
potential of integrating ultrasound imaging with advanced MIA and ML modeling strategies
for the rapid and accurate detection of BF in chicken breast fillets. This approach offers a
non-invasive and computationally efficient tool, paving the way for real-time detection and
the implementation of fast, intelligent, non-invasive and non-destructive quality inspection
systems in poultry meat industry.

Keywords: chicken breast, foreign bodies, bone fragments, in-line and real-time quality
monitoring, multivariate image analysis, multivariate statistical quality monitoring,
unsupervised and supervised machine learning, variable selection, multi-objective
optimization.



Resumen

La industria de la carne de ave requiere sistemas inteligentes que permitan la deteccion no
invasiva, no destructiva y en tiempo real de fragmentos 6seos (BF). Por lo tanto, el objetivo
principal de este estudio fue evaluar la viabilidad del uso de imagenes por ultrasonido,
analisis multivariante de imagenes (MIA) basado en control estadistico multivariante de
procesos (MSPC) y modelos de aprendizaje automatico basados en variables latentes (LV-
ML) para detectar BF de diferentes tamafios en filetes de pechuga de pollo deshuesados y sin
piel. BF de diferentes dimensiones (2.0x1.5 ¢m, 2.0x1.0 cm, 1.5%0.3 cm, 1.0x0.3 cm y
0.5x0.3 cm) fueron insertados en los filetes de pechuga en cinco ubicaciones distintas. Se
adquirieron imagenes ultrasonicas de contacto en filetes control (C) y fuera de control (OC,
con hueso) mediante el escaneo de la superficie de la pechuga en modo de transmision,
usando sensores ultrasonicos de contacto de 1 MHz y siguiendo un patrén preestablecido.
Los parametros ultrasonicos de magnitud y distribucion de energia se calcularon a nivel de
pixel considerando tres enfoques: dominio del tiempo (TDA), dominio de la frecuencia
(FDA) y la combinacion de ambos (TFDA). Adicionalmente, se evaluaron los enfoques de
TFDA con escalado por bloques duros (TFDABH) y suave (TFDABS). Para cada enfoque,
se aplico el procedimiento MIA-MSPC considerando el Analisis de Componentes Principales
(PCA) como espacio latente de base. A partir del modelo PCA, las estadisticas de Suma de
Cuadrados Residuales (RSS) y T-cuadrado de Hotelling (T?) se utilizaron para clasificar las
imagenes C y OC proyectadas en la estructura latente del PCA. En el caso de los modelos
LV-ML, se entrenaron siete técnicas de aprendizaje automatico (75%) y se validaron (25%)
para clasificar las imagenes C y OC proyectadas en el espacio latente del PCA. Ademas, se
aplico la Seleccion de Variables del Bosque Aleatorio basado en la Disminucion de Precision
Media (MDA-RF-VS) para identificar y jerarquizar las variables latentes mas relevantes,
maximizando asi el rendimiento de deteccién en un nuevo conjunto de clasificadores de
aprendizaje automatico basados en variables latentes (RF-VS-LV-ML). Posteriormente, la
Regresion por Minimos Cuadrados Parciales (PLSR) se utiliz6 como herramienta estadistica
para modelado y optimizacion multiobjetivo, lo que permitio explorar las relaciones entre los
hiperparametros de los modelos de ML, el nimero de LV evaluadas y los enfoques de datos
en dominios tiempo-frecuencia con escalado por bloques. Los resultados demostraron que la
presencia de fragmentos 6seos en filetes de pechuga de pollo provocé alteraciones en los
parametros ultrasonicos de energia-magnitud (disminucién promedio de la amplitud de
81.6% a 52.6%) y energia-distribucion (disminucion promedio de la varianza de 97.9% a
70.6%). La estadistica RSS alcanz6 el mejor desempeiio de clasificacion (precision de TDA,
FDA y TFDA >95%) al diferenciar entre imagenes C y OC. Asimismo, el uso combinado de
modelos LV-ML, RF-VS-LV-ML vy la optimizacion multiobjetivo mediante PLSR permitié
determinar que el modelo RF-VS-LV-RF-FDA fue el de mejor desempefio, con una precision
de clasificacion superior al 99%, manteniendo tiempos de computo razonables durante el
proceso de entrenamiento. Estos resultados destacan el potencial de integrar iméagenes por
ultrasonido con estrategias avanzadas de MIA y ML para la deteccion rapida y precisa de BF
en filetes de pechuga de pollo. Este enfoque ofrece una herramienta no invasiva y
computacionalmente eficiente, allanando el camino para la deteccién en tiempo real y la
implementacion de sistemas de inspeccion de calidad rapidos, inteligentes, no invasivos y no
destructivos en la industria avicola.

Palabras clave: pechuga de pollo, cuerpos extrafos, fragmentos dseos, monitoreo de calidad
en linea y en tiempo real, andlisis de imagenes multivariado, monitoreo estadistico
multivariado de calidad, aprendizaje automatico supervisado y no supervisado, seleccion de
variables, optimizacion multiobjetivo.



Resum

La industria de la carn d'au requerix sistemes intel-ligents que permeten la deteccid no
invasiva, no destructiva i en temps real de fragments gose-us (BF). Per tant, I'objectiu
principal d'este estudi va ser avaluar la viabilitat de l'is d'imatges per ultraso, analisi
multivariant d'imatges (MIA) basat en control estadistic multivariant de processos (MSPC) i
models d'aprenentatge automatic basats en variables latents (LV-ML) per a detectar BF de
diferents grandaries en filets de pit de pollastre desossats i sense pell. BF de diferents
dimensions (2.0x1.5 cm, 2.0x1.0 cm, 1.5%0.3 cm, 1.0x0.3 cm 1 0.5%0.3 cm) van ser inserits
en els filets de pit de pollastre en cinc ubicacions distintes. Es van adquirir imatges
ultrasoniques de contacte en filets control (C) i fora de control (OC, amb os) mitjangant
l'escaneig de la superficie del pit de pollastre en mode de transmissio, usant sensors
ultrasonics de contacte d'l MHz i seguint un patr6 preestablit. Els parametres ultrasonics de
magnitud i distribuci6 d'energia es van calcular a nivell de pixel considerant tres enfocaments:
domini del temps (TDA), domini de la freqiiencia (FDA) 1 la combinaci6 dels dos (TFDA).
Addicionalment, es van avaluar els enfocaments de TFDA amb escalat per blocs durs
(TFDABH) i1 suau (TFDABS). Per a cada enfocament, es va aplicar el procediment MIA-
MSPC considerant I'Analisi de Components Principals (PCA) com a espai latent de base. A
partir del model PCA, les estadistiques de Suma de Quadrats Residuals (RSS) 1 T-quadrat de
Hotelling (T?) es van utilitzar per a classificar les imatges C i OC projectades en l'estructura
latent del PCA. En el cas dels models LV-ML, es van entrenar set técniques d'aprenentatge
automatic (75%) 1 es van validar (25%) per a classificar les imatges C i OC projectades en
l'espai latent del PCA. A més, es va aplicar la Seleccié de Variables del Bosc Aleatori basat
en la Disminuci6 de Precisio Mitjana (MDA-RF-VS) per a identificar i jerarquitzar les
variables latents més rellevants, maximitzant aixi el rendiment de deteccidé en un nou conjunt
de classificadors d'aprenentatge automatic basats en variables latents (RF-VS-LV-ML).
Posteriorment, la Regressio per Minims Quadrats Parcials (PLSR) es va utilitzar com a
ferramenta estadistica per a modelatge i optimitzacié multiobjectiu, la qual cosa va permetre
explorar les relacions entre els hiperparametros dels models de ML, el nimero de LV
avaluades i els enfocaments de dades en dominis temps-freqiiencia amb escalat per blocs. Els
resultats van demostrar que la preséncia de fragments ossis en filets de pit de pollastre va
provocar alteracions en els parametres ultrasonics d'energia-magnitud (disminucié mitjana
de I'amplitud de 81.6% a 52.6%) 1 energia-distribucio6 (disminuci6 mitjana de la variancia de
97.9% a 70.6%). L'estadistica RSS va aconseguir el millor acompliment de classificacio
(precisio de TDA, FDA 1 TFDA >95%) en diferenciar entre imatges C 1 OC. Aixi mateix, 1'as
combinat de models LV-ML, RF-VS-LV-ML i l'optimitzacié multiobjectiu mitjangant PLSR
va permetre determinar que el model RF-VS-LV-RF-FDA va ser el de millor acompliment,
amb una precisié de classificacio superior al 99%, mantenint temps de comput raonables
durant el procés d'entrenament. Estos resultats destaquen el potencial d'integrar imatges per
ultraso amb estratégies avangades de MIA 1 ML per a la detecciod rapida i precisa de BF en
filets de pit de pollastre. Este enfocament oferix una ferramenta no invasiva i
computacionalment eficient, aplanant el cami per a la deteccid en temps real i la
implementacié de sistemes d'inspeccid de qualitat rapids, intel-ligents, no invasius i no
destructius en la industria avicola.

Paraules clau: pit de pollastre, cossos estranys, fragments ossis, monitoratge de qualitat en
linia 1 en temps real, analisi d'imatges multivariat, monitoratge estadistic multivariat de
qualitat, aprenentatge automatic supervisat i no supervisat, seleccié de variables, optimitzacid
multiobjectiu.



PREFACE

Driven by both personal interest and professional commitment to providing objective
information that supports decision-making in the meat industry and the broader food sector,
this research was developed within the framework of the master’s degree in data analysis,
process improvement, and decision support engineering at Universitat Politécnica de
Valéncia.

The main aim of this work was the development of quantitative tools (such as digital models
of food manufacturing processes) for monitoring food quality and detecting foreign bodies in
food products. During the master’s dissertation period, significant efforts were devoted to
calibrating robust multivariate statistical models tailored for industrial implementation. In
addition, throughout the academic training provided by the master’s program, particularly in
those courses related to the use of advanced statistical techniques, the knowledge provided
has laid the groundwork for the development of intelligent systems (digital models in
combination with cutting-edge ultrasound technologies) that can contribute to statistical
quality monitoring, process optimization, and informed decision-making within the food
industry.

As a result, different tools (models, methodologies, patents, among others) have been
developed and are now available to be applied in real-world scenarios, advancing the
response to the challenges faced by the food industry in the context of Industry 4.0. These
tools enable more effective quality monitoring and decision-making within the food sector.
Furthermore, they provide valuable insights for optimizing non-invasive and non-destructive
quality inspection systems, enhancing overall efficiency in production lines, and helping to
overcome the challenges posed by the ongoing digitalization of the agrifood sector.

The main contributions of this study are outlined as follows:
Research patents:

1. Collazos-Escobar, Gentil Andrés., Pefia Cerverd, Ramon., Bon Corbin, José.,
Benedito Fort, José Javier., Prats-Montalban, José Manuel., Garcia-Pérez, José
Vicente., Carcel, J. A., Fernandez-Caballero-Farifias, Maria Dolores. Dispositivo y
Procedimiento para la Deteccion No Invasiva de Cuerpos Extrafios en Alimentos
Sélidos o Semisolidos con Ultrasonidos. UNIVERSIDAD POLITECNICA DE
VALENCIA; AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIG.
CIENTIFICAS, P202330154. 23 Feb 2023.



Research awards:

1.

Collazos-Escobar, Gentil Andrés., Prats-Montalban, José Manuel., Benedito
Fort, José Javier., Giacomozzi, Soledad., Carcel, Juan., Garcia-Pérez, José Vicente.
(2023). Deteccion no-invasiva de presencia de insectos en postres gelificados
mediante ultrasonidos sin contacto. VIII Encuentro de Estudiantes de Doctorado de
la Universitat Politécnica de Valéncia. Valéncia, Espafia.

Collazos-Escobar, Gentil Andrés., Medina-Casas, Martha Patricia., Garcia-Pérez,
José Vicente. (2024). Sistemas avanzados e inteligentes para la monitorizacion no
invasiva de la calidad de los alimentos (Al-FoodSafety). IV Edicion de los Premios
Aula Emprende en la Universitat Politécnica de Valéncia. Valencia, Espana.

Research articles

Published:

Collazos-Escobar, Gentil Andrés., Gutiérrez-Guzman, Nelson., Vaquiro-Herrera,
Henry., Bon, José., Carcel, Juan., Garcia-Peréz, José Vicente. (2023). Model-based
investigation of the water adsorption in Achira (Canna edulis K.) biscuits. LWT, Food
Science and Technology. DOI: https://doi.org/10.1016/j.1wt.2023.115472

Collazos-Escobar, Gentil Andrés., Barrios-Rodriguez Yeison., Bahamon-Monje
Andres., Gutiérrez-Guzman, Nelson. (2024). Mid-infrared spectroscopy and machine
learning as a complementary tool for sensory quality assessment of roasted cocoa-
based products. Infrared Physics & Technology, Volume 141, September 2024,
105482. DOI: https://doi.org/10.1016/j.infrared.2024.105482

Collazos-Escobar, Gentil Andrés., Lincetti, Elisa., Spilimbergo, Sara., Prats-
Montalban, José Manuel., Garcia-Pérez, José Vicente., Benedito, José. (2025).
Integrated use of ultrasound imaging and multivariate image analysis for detecting
bone fragments in poultry meat. Food Research International, Volume 206, April
2025, Article: 16047. DOI: https://doi.org/10.1016/j.foodres.2025.116047

Collazos-Escobar, Gentil Andrés., Gutiérrez-Guzman Nelson., Vaquiro Henry A.,
Garcia-Pérez José Vicente., Carcel Juan A. (2025). Analysis of machine learning
algorithms for the computer simulation of moisture sorption isotherms of coffee
beans. Food and Bioprocess Technology. DOI: https://doi.org/10.1007/s11947-025-
03785-x

Collazos-Escobar, Gentil Andrés., Prats-Montalban, José Manuel., Giacomozzi,
Soledad., Benedito, José., Gomez Alvarez-Arenas, Tomas E. and Garcia-Pérez, José
Vicente. (2025). Contactless detection of internal foreign bodies in foods using air-


https://doi.org/10.1016/j.lwt.2023.115472
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coupled ultrasound: case studies on beef burger patties and jelly plates. Food
Engineering. DOI: https://doi.org/10.1016/j.jfoodeng.2025.112777

Research articles from collaboration:

1.

Sanchez-Jimenez, Virginia., Collazos-Escobar, Gentil Andrés., Gonzalez-Mohino,
Alberto., Gomez Alvarez-Arenas, Tomas., Benedito, José Javier., Garcia-Pérez,
José Vicente. (2023). Non-invasive monitoring of potato drying by means of air-
coupled ultrasound. Food Control. DOI: 10.1016/j.foodcont.2023.109653

Llavata, Beatriz., Collazos-Escobar, Gentil. Andrés., Garcia-Pérez, José Vicente.,
Cércel, Juan. (2024). PEF pre-treatment and ultrasound-assisted drying at different
temperatures as a stabilizing method for the up-cycling of kiwifruit: Effect on drying
kinetics and final quality. Innovative Food Science & Emerging Technologies. DOI:
https://doi.org/10.1016/].ifset.2024.103591

Khanlar. Malikeh., Collazos-Escobar, Gentil Andrés., Garcia-Pérez, José
Vicente., Carcel, Juan. (2025). Oleuropein extraction from olive leaves assisted by
moderate electric fields and high-power ultrasound. A parametric study. Applied
Food Research, Article 100654. DOLI: https://doi.org/10.1016/j.afres.2024.100654

Book chapters:

1.

Collazos-Escobar, Gentil Andrés, Gutiérrez-Guzman, Nelson., Vaquiro-Herrera,
Henry., Bon, José., Carcel, Juan., Garcia-Peréz, José Vicente. (2023). Modelling of
water sorption isotherms of dehydrated coffee beans using machine learning
techniques. https://www.eurodrying2023.p.lodz.pl/travel-and-accomodation/
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In addition, we have participated in various national and international conferences during the
master’s dissertation period:

International conferences:

1. Collazos-Escobar, Gentil Andrés., Garcia-Peréz, José Vicente., Prats-
Montalban, José Manuel. (2021). Multivariate image analysis for detection of
foreign bodies in burger meat. V Congreso Internacional de Investigacion e
Innovacién en Ingenieria, Ciencia y Tecnologia de Alimentos (IICTA 2021). Oral
presentation.

2. Collazos-Escobar, Gentil Andrés., Gutiérrez-Guzman, Nelson., Barrios-Rodriguez,
Yeison. (2021). Mathematical sorption and machine learning modeling for predicting
the equilibrium moisture content of specialty coffee beans (Coffee arabica L. Bourbon
Rosado). V Congreso Internacional de Investigacion e Innovacion en Ingenieria,
Ciencia y Tecnologia de Alimentos (IICTA 2021). Oral presentation.

3. Collazos-Escobar, Gentil Andrés., Prats-Montalban, José Manuel., Carcel, Juan
A., Garcia-Pérez, José Vicente., Bon Corbin, José (2022). Convolutional Neural
Networks for detecting foreign bodies in burger meat patties based on digital images.
XIII Congreso Iberoamericano de Ingenieria de Alimentos (CIBIA 2022). Medellin,
Colombia. Poster presentation.

4. Collazos-Escobar, Gentil Andrés., Bon, José., Garcia-Pérez, José Vicente.,
Carcel, Juan., Gutiérrez-Guzman, Nelson. (2022). Artificial Neural Networks for
predicting the water sorption isotherms of dehydrated cocoa and coffee products. XIII
Congreso Iberoamericano de Ingenieria de Alimentos (CIBIA 2022). Medellin,
Colombia. Oral presentation.

5. Collazos-Escobar, Gentil Andrés., Blanquer-Fernandez, Maria., Benedito, José.,
Carcel, Juan., Prats-Montalban, José Manuel., Bon, José., Garcia-Pérez, José
Vicente. (2022). Rapid and non-destructive quality inspection of jelly products using
acoustic ultrasonic imaging combined with machine learning techniques. 15"
Conference of Food Engineering (CoFE’22). Raleigh, EEUU. Oral presentation.

6. Collazos-Escobar, Gentil Andrés., Sanchez-Jimenez, Virginia., Blanquer-
Fernandez, Maria., Garcia-Peréz, José Vicente., Carcel, Juan., Prats-Montalban,
José Manuel., Benedito, José Javier. (2023). Combination of acoustic imaging and
machine learning algorithms for the rapid characterization of jelly-based products.
14 International Congress on Engineering and Food (ICEF14). Nantes, France. Oral
presentation.



10.

11.

12.

13.

14.

Collazos-Escobar, Gentil Andrés., Barrios-Rodriguez, Yeison., Bahamon-Monje,
Andrés., Gutiérrez-Guzman, Nelson., Carcel, Juan., Garcia-Pérez, José Vicente.
(2023). Combination of machine learning with mid-infrared spectroscopy for sensory
quality assessment of roasted cocoa-based products. 37" EFFoST International
Conference. Valeéncia, Spain. Poster presentation.

Collazos-Escobar, Gentil Andrés., Giacomozzi, Soledad., Prats-Montalban, José
Manuel., Benedito, José., Gosalbez, José., Garcia-Pérez, José Vicente. (2023).
Improvement in the detection of foreign bodies in jelly-based products through
wavelet-based ultrasound-imaging. 37™ EFFoST International Conference. Valéncia,
Spain. Poster presentation.

Collazos-Escobar, Gentil Andrés., Giacomozzi, Soledad., Prats-Montalban, José
Manuel., Benedito, José., Gosalbez, José., Garcia-Pérez, José Vicente. (2023). Use
of air-coupled ultrasound in combination with machine learning to detect insects in
gelled desserts. 37" EFFoST International Conference. Valéncia, Spain. Poster
presentation.

Collazos-Escobar, Gentil Andrés., Lincetti, Elisa., Giacomozzi, Soledad.,
Spilimbergo, Sara., Benedito, José., Garcia-Pérez, José Vicente. (2023). Detection
of bone fragments in chicken breast using non-invasive air-coupled ultrasound
imaging. 37" EFFoST International Conference. Valéncia, Spain. Poster presentation.

Collazos-Escobar, Gentil Andrés., Giacomozzi, Soledad., Prats-Montalban, José
Manuel., Benedito, José., Garcia-Pérez, José Vicente. (2023). Non-invasive
detection of foreign bodies in burger meat patties by contactless ultrasound imaging.
37" EFFoST International Conference. Valéncia, Spain. Oral presentation.

Collazos-Escobar, Gentil Andrés., Llavata, Beatriz., Garcia-Pérez, José Vicente.,
Simal, Susana., Zhang, Hongwei., Carcel, Juan. (2025). Computer modeling of
ultrasonically assisted drying of PEF-pretreated kiwifruit using machine learning
techniques. 39" EFFoST International Conference. Porto, Portugal. Poster
presentation.

Collazos-Escobar, Gentil Andrés., Bahamoén-Monje, Andrés., Salas-Calderon,
Karen., Barrios-Rodriguez, Yeison., Gutiérrez-Guzméan, Nelson. (2025). Detection of
coffee defects in green and roasted beans using Deep Learning and infrared
spectroscopy. 39" EFFoST International Conference. Porto, Portugal. Poster
presentation.

Collazos-Escobar, Gentil Andrés., Hussaim, Tassadaq., Benedito, Jos¢, Zhang,
Hongwei., Carcel, Juan., Garcia-Pérez José Vicente. (2025). Latent-based machine
learning and contact ultrasound for detection of foreign bodies in jelly-based
products. 39" EFFoST International Conference. Porto, Portugal. Poster presentation.



15. Collazos-Escobar, Gentil Andrés., Morales-Angulo, Ever., Bahamoén-Monje,

Andres., Gutiérrez-Guzman, Nelson. (2025). Non-destructive quality assessment of
green and roasted specialty coffee using machine learning and FT-NIR spectroscopy.
39" EFFoST International Conference. Porto, Portugal. Poster presentation.

National conferences:

1.

Collazos-Escobar, Gentil Andrés., Carcel, Juan A., Garcia-Pérez, José Vicente.,
Lincetti E., Benedito Fort, José Javier., Prats-Montalban, Jos¢é Manuel., Bon
Corbin, José. (2022). Aplicacion de la transformada wavelet discreta para la rapida
deteccion de cuerpos extrafos en pechuga de pollo a partir de imagenes acusticas. XI
Congreso Nacional de Ciencia y Tecnologia de los Alimentos (CyTA/CESIA 2022).
Zaragoza, Espafia: Servicio de Publicaciones Universidad de Zaragoza. Poster
presentation.

Collazos-Escobar, Gentil Andrés., Bon, José., Benedito, José., Carcel, Juan.,
Garcia-Pérez, José Vicente., Prats-Montalban, José Manuel., Lincetti, Elisa.
(2022). Uso de técnicas de andlisis multivariante para mejorar la deteccién de
fragmentos 6seos en pechuga de pollo mediante ultrasonidos por contacto. XI
Congreso Nacional de Ciencia y Tecnologia de los Alimentos (CyTA/CESIA 2022).
Zaragoza, Espafia: Servicio de Publicaciones Universidad de Zaragoza. Oral
presentation.

Collazos-Escobar, Gentil Andrés., Giacomozzi, Soledad., Garcia-Pérez, José
Vicente., Prats-Montalban, José Manuel., Benedito Fort, José Javier.
(2024). Ultrasonidos sin contacto para la deteccion de fragmentos dseos en pechugas
de pollo. EN AGROALNEXT 2024. Innovaciéon y transferencia en el sector
agroalimentario espafiol. Gandia, Espana.

Collazos-Escobar, Gentil Andrés., Giacomozzi, Soledad., Prats-Montalban, José
Manuel., Benedito Fort, José Javier., Garcia-Pérez, José Vicente., Carcel, Juan.
(2024). Uso de imagenes digitales y redes neuronales convolucionales para la
deteccion automatica de cuerpos extrafios en postres gelificados comerciales. XII
Congreso Nacional de Ciencia, Tecnologia e Ingenieria de los Alimentos
(CyTA/CESIA 2024). Barcelona, Espafia.

Master lectures:

Collazos-Escobar, Gentil Andrés. (2022). Uso de herramientas de analisis
multivariante para la monitorizacion y control estadistico de procesos
agroindustriales. I Workshop Investigacion en Ciencia e Ingenieria de los Alimentos.
Neiva-Huila, Colombia. Oral presentation.



Given course:

1.

Collazos-Escobar, Gentil Andrés. (2021). Uso de Técnicas de Prevision para el
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INDUSTRIAL RELEVANCE

In recent years, the poultry meat industry has experienced significant growth and has become
the most widely produced type of meat globally. Consumption continues to increase,
primarily due to its affordability and high nutritional value.

One persistent challenge in the poultry industry is the detection of bone fragments. During
the rapid mechanical deboning process, industrial machinery separates chicken breasts from
the skeleton, which can lead to small bone fragments being embedded in the fillets. To ensure
consumer safety, it is crucial to detect these fragments in-line and in real time. As a result,
the poultry industry requires intelligent systems capable of non-invasive, real-time bone
fragment detection.

In the context of Industry 4.0, the integration of non-invasive and non-destructive
technologies with advanced digital models such as multivariate statistical techniques,
machine learning, and deep learning offers innovative solutions for real-time quality
monitoring of food products. In this regard, the combination of ultrasound imaging,
multivariate image analysis, and machine learning is essential. The development of intelligent
monitoring systems based on these technologies can enable fast and accurate inline detection
of bone fragments, reducing contamination risks and ensuring consumer safety.

Digital twins, a digital representations of physical poultry quality monitoring systems,
facilitate interactive communication between ultrasound systems and data-driven models
(e.g., statistical, machine learning, and deep learning). Implementing digital twins supports
continuous monitoring and optimization of detection systems, ensuring high standards of
quality control while enhancing both production efficiency and product quality. Therefore,
this study highlights the role of multivariate statistical models and machine learning as digital
models in improving bone fragment detection in chicken breasts. By data-driven modeling
and model optimization, the inline-implementation of these models can significantly reduce
the occurrence of bone fragments, resulting in safer and higher-quality poultry products.
Thus, the adoption of these technologies demonstrates their potential to transform food safety
protocols not only within the poultry sector, but across the entire food processing industry.
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Highlights

¢ Non-invasive and non-destructive methodology is proposed to detect bone fragments
(BF) within chicken breast products.

e Ultrasound imaging, multivariate image analysis (MIA) and machine learning (ML)
methods were combined to detect BF within poultry meat.

e The presence of BF reduced ultrasonic energy-related parameters.

e Ultrasound imaging allowed detecting bone fragments in chicken breast fillets.

e Integrated used of MIA and Multivariate Statistical Process Control (MIA-MSPC)
models achieved >95% accuracy in BF detection.

e The improvement of MIA-MSPC was explored through Latent-Variable-based ML
(LV-ML) models and the Variable-Selection-based Random Forest LV-ML (RF-VS-
LV-ML) strategy.

e Partial Least Squares Regression (PLSR) combined with the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization method enabled multi-
objective hyperparameter tuning and facilitated the selection of the best ML model
for maximizing BF detection performance.

e The use of LV-ML and RF-VS-LV-ML significantly enhanced the detection of BF in
poultry breast samples.

e The RF-VS-LV-RF-FDA model achieved >99% accuracy in BF detection.

e Ultrasound technology combined with MIA/ML provides a rapid, non-invasive, and
non-destructive tool for statistical quality monitoring in foods.

e Future research should focus on implementing this intelligent system for real-time
quality inspection of chicken-based products in industrial inline settings.
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Fig. 1. Flowchart of the main steps to prepare control and OC (out-of-control) samples. A,
B, C and D for control images, furthermore C, B, E, F, G and H for OC images.

Fig. 2. Equipment used for ultrasound image acquisition. It consisted of one computer (A),
one oscilloscope (B), one generator-receiver (C), two ultrasonic transducers (D), food sample
(E) and digital caliper (F).

Fig. 3. Baseline correction of time-domain ultrasound signals (A) and energy-magnitude
ultrasound parameters (B).

Fig. 4. Flowchart illustrating the ultrasound-based feature extraction procedure and the
methodological strategies implemented to identify the presence of bone fragments in out-of-
control (OC) samples using time-frequency domain approaches.

Fig. 5. Statistical modeling procedure used for both unsupervised and supervised strategies
in the detection of bone fragments in poultry meat. Analysis of different approaches time-
domain, frequency-domain and time-frequency-domain (A), unsupervised modeling using
principal component analysis (PCA) and statistical optimization via Multivariate Statistical
Process Control (MSPC) based Residual Sum Squares (RSS) and Hotelling’s T-square (T?)
statistics (B) and supervised modeling and optimization based on Latent Variable-Machine
Learning (LV-ML).

Fig. 6. Statistical modeling procedure used to evaluate the feasibility of variable selection
(VS) based on mean decrease in accuracy from a Random Forest (RF) model for tuning and
optimizing supervised machine learning (ML) techniques. The analysis includes: time-
frequency-domain approaches (A), RF-based variable selection (RF-VS; B) and supervised
modeling and optimization based on selected latent variables using machine learning (RF-
VS-LV-ML; C).

Fig. 7. Statistical modeling procedure based Partial Least Squares Regression (PLSR) used
in the multi-objective optimization of Latent Variable-Machine Learning (LV-ML) and
Random Forest-Variable Selection-Latent Variable-Machine Learning (RF-VS-LV-ML)
models.

Fig. 8. Ultrasound signals and example of PP (peak-to-peak) image for detection of bone
fragments within the center of chicken breast samples. Bone fragments of size 2.0 X 1.5 cm
(A, D) and size of 2.0 x 1.0 cm (B, E), control sample image (C).

Fig. 9. Ultrasound signals and example of PP (peak-to-peak) image for detection of bone
fragments within the center of chicken breast samples. Bone fragments of size 1.5 X 0.3 cm
(A, D), size of 1.0 x 0.3 cm (B, E) and size of 0.5 x 0.3 cm (C, F).



Fig. 10. Example of the frequency spectrum of chicken breast samples with and without bone
fragments. Bone fragments of size 2.0 < 1.5 cm (A), size of 2.0 x 1.0 cm (B), size 1.5 x 0.3
cm (C), size of 1.0 x 0.3 cm (D) and size of 0.5 X 0.3 cm (E).

Fig. 11. Classification performance of the multivariate control statistics used for detection of
bone fragments in chicken breast. Average A for both RSS and T? considering TDA (A, C),
FDA (E, G) and TFDA (I, K) approaches. Average Se and Sp for both RSS and T2
considering TDA (B, D), FDA (F, H) and TFDA (J, L) approaches. TDA (time-domain
approach), FDA (frequency-domain approach), TFDA (time-frequency domain approach),
A (overall accuracy), Se (sensibility), S, (specificity), RSS (Residual Sum Squares) and T2
(Hotelling’s T-squared).

Fig. 12. Average A performance of RSS and T? control statistics used for detection of bone
fragments in chicken breast using different number of ultrasound images. Results for TDA
(A), FDA (B) and TFDA (C). TDA (time-domain approach), FDA (frequency-domain
approach), TFDA (time-frequency domain approach), A (overall accuracy), RSS (Residual
Sum Squares) and T? (Hotelling’s T-squared).

Fig. 13. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-domain approach (TDA), shown as a function of the SVM
hyperparameters and the number of latent variables (NLVs) tested. Results of overall
accuracy (Acc) obtained with the “anovadot” kernel function are reported separately for the
training (75%) and the validation (25%) datasets.

Fig. 14. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the frequency-domain approach (FDA), shown as a function of the SVM
hyperparameters and the number of latent variables (NLVs) tested. Results of overall
accuracy (Acc) obtained with the “anovadot” kernel function are reported separately for the
training (75%) and the validation (25%) datasets.

Fig. 15. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-frequency-domain approach (TFDA), shown as a function of the
SVM hyperparameters and the number of latent variables (NLVs) tested. Results of overall
accuracy (Acc) obtained with the “anovadot” kernel function are reported separately for the
training (75%) and the validation (25%) datasets.

Fig. 16. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-frequency-domain approach-block-scale hard (TFDABH), shown
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested.
Results of overall accuracy (Acc) obtained with the “anovadot” kernel function are reported
separately for the training (75%) and the validation (25%) datasets.



Fig. 17. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-frequency-domain approach-block-scale soft (TFDABS), shown
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested.
Results of overall accuracy (Acc) obtained with the “anovadot” kernel function are reported
separately for the training (75%) and the validation (25%) datasets.

Fig. 18. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM)
using the time-domain approach (TDA), shown as a function of the SVM hyperparameters
and the number of latent variables (NLVs) tested. Results of CT are presented for the training
(75%) dataset.

Fig. 19. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM)
using the frequency-domain approach (FDA), shown as a function of the SVM
hyperparameters and the number of latent variables (NLVs) tested. Results of CT are
presented for the training (75%) dataset.

Fig. 20. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM)
using the time-frequency-domain approach (TFDA), shown as a function of the SVM
hyperparameters and the number of latent variables (NLVs) tested. Results of CT are
presented for the training (75%) dataset.

Fig. 21. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM)
using the time-frequency-domain approach-block-scale hard (TFDABH), shown as a
function of the SVM hyperparameters and the number of latent variables (NLVs) tested.
Results of CT are presented for the training (75%) dataset.

Fig. 22. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM)
using the time-frequency-domain approach-block-scale soft (TFDABS), shown as a function
of the SVM hyperparameters and the number of latent variables (NLVs) tested. Results of
CT are presented for the training (75%) dataset.

Fig. 23. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naive Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent
Variable-Generalized Linear Model (LV-GLM) using the time-domain approach (TDA),
shown as a function of the ML hyperparameters and the number of latent variables (NLVs)
tested. Results of overall accuracy (Acc) are reported separately for the training (75%) and
the validation (25%) datasets.



Fig. 24. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naive Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent
Variable-Generalized Linear Model (LV-GLM) using the frequency-domain approach
(FDA), shown as a function of the ML hyperparameters and the number of latent variables
(NLVs) tested. Results of overall accuracy (Acc) are reported separately for the training (75%)
and the validation (25%) datasets.

Fig. 25. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naive Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent
Variable-Generalized Linear Model (LV-GLM) using the time-frequency-domain approach
(TFDA), shown as a function of the ML hyperparameters and the number of latent variables
(NLVs) tested. Results of overall accuracy (Acc) are reported separately for the training (75%)
and the validation (25%) datasets.

Fig. 26. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naive Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent
Variable-Generalized Linear Model (LV-GLM) using the time-frequency-domain approach-
block-scale hard (TFDABH), shown as a function of the ML hyperparameters and the number
of latent variables (NLVs) tested. Results of overall accuracy (Acc) are reported separately
for the training (75%) and the validation (25%) datasets.

Fig. 27. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naive Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent
Variable-Generalized Linear Model (LV-GLM) using the time-frequency-domain approach-
block-scale soft (TFDABS), shown as a function of the ML hyperparameters and the number
of latent variables (NLVs) tested. Results of overall accuracy (Acc) are reported separately
for the training (75%) and the validation (25%) datasets.

Fig. 28. Computational time (CT) of the Latent Variable-Random Forest (LV-RF), Latent
Variable-Naive Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis (LV-LDA),
Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent Variable-
Generalized Linear Model (LV-GLM) using the time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale
soft (TFDABS), shown as a function of the ML hyperparameters and the number of latent
variables (NLVs) tested. Results of CT are reported for the training (75%) dataset.



Fig. 29. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-domain
approach (TDA), shown as a function of the SVM hyperparameters. Results of overall
accuracy (Acc) are reported as a mean + standard deviation separately for the training (75%)
and the validation (25%) datasets. Furthermore, computational time (CT) is also presented a
mean + standard deviation for the training process. Kernel functions (rbfdot, polydot,
laplacedot, vanilladot, besseldot, and anovadot), SVM’ type (C-svc and nu-svc) and
regularization parameter (C; 100, 500.5, and 1000).

Fig. 30. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the frequency-domain
approach (FDA), shown as a function of the SVM hyperparameters. Results of overall
accuracy (Acc) are reported as a mean + standard deviation separately for the training (75%)
and the validation (25%) datasets. Furthermore, computational time (CT) is also presented a
mean + standard deviation for the training process. Kernel functions (rbfdot, polydot,
laplacedot, vanilladot, besseldot, and anovadot), SVM’ type (C-svc and nu-svc) and
regularization parameter (C; 100, 500.5, and 1000).

Fig. 31. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-frequency-
domain approach (TFDA), shown as a function of the SVM hyperparameters. Results of
overall accuracy (Acc) are reported as a mean + standard deviation separately for the training
(75%) and the validation (25%) datasets. Furthermore, computational time (CT) is also
presented a mean + standard deviation for the training process. Kernel functions (rbfdot,
polydot, laplacedot, vanilladot, besseldot, and anovadot), SVM’ type (C-svc and nu-svc) and
regularization parameter (C; 100, 500.5, and 1000).

Fig. 32. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-frequency-
domain approach-block-scale hard (TFDABH), shown as a function of the SVM
hyperparameters. Results of overall accuracy (Ac) are reported as a mean =+ standard
deviation separately for the training (75%) and the validation (25%) datasets. Furthermore,
computational time (CT) is also presented a mean + standard deviation for the training
process. Kernel functions (rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot),
SVM’ type (C-svc and nu-svc) and regularization parameter (C; 100, 500.5, and 1000).

Fig. 33. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-frequency-
domain approach-block-scale soft (TFDABS), shown as a function of the SVM
hyperparameters. Results of overall accuracy (Ac) are reported as a mean + standard
deviation separately for the training (75%) and the validation (25%) datasets. Furthermore,
computational time (CT) is also presented a mean + standard deviation for the training
process. Kernel functions (rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot),
SVM’ type (C-svc and nu-svc) and regularization parameter (C; 100, 500.5, and 1000).



Fig. 34. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Random Forest (RF-VS-LV-RF) using the time-domain approach (TDA),
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain
approach-block-scale soft (TFDABS), shown as a function of the RF hyperparameters.
Results of overall accuracy (Acc) are reported as a mean + standard deviation separately for
the training (75%) and the validation (25%) datasets. Additionally, computational time (CT)
is also presented a mean =+ standard deviation for the training process. DTe (decision tree),
NTs (number of trees).

Fig. 35. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Naive Bayes (RF-VS-LV-NB) using the time-domain approach (TDA),
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain
approach-block-scale soft (TFDABS), shown as a function of the NB hyperparameters.
Results of overall accuracy (Acc) are reported as a mean + standard deviation separately for
the training (75%) and the validation (25%) datasets. Additionally, computational time (CT)
is also presented a mean + standard deviation for the training process. LS (Laplace
Smoothing).

Fig. 36. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Linear Discriminant Analysis (RF-VS-LV-LDA), Random Forest-Variable
Selection-Latent Variable-Quadratic Discriminant Analysis (RF-VS-LV-QDA) and Random
Forest-Variable Selection-Latent Variable-Generalized Linear Model Analysis (RF-VS-LV-
GLM) using the time-domain approach (TDA), frequency-domain approach (FDA), time-
frequency-domain approach (TFDA), time-frequency-domain approach-block-scale hard
(TFDABH) and time-frequency-domain approach-block-scale soft (TFDABS). Results of
overall accuracy (Acc) are reported as a mean + standard deviation separately for the training
(75%) and the validation (25%) datasets. Additionally, computational time (CT) is also
presented a mean + standard deviation for the training process.

Fig. 37. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Support Vector Machines (LV-SVM)
model considering simultaneously the data approach: time-domain approach (TDA),
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain
approach-block-scale soft (TFDABS), and the SVM’s hyperparameters and number of latent
variables (NLVs). NPLSR (computed number of PLSR components), R? (coefficient of
determination for training dataset), Q? (coefficient of determination for K-Fold cross
validation dataset), RMSETr (root mean square error for training dataset), RMSEcv (root
mean square error for K-Fold cross validation dataset), RSS (residual sum squares), T?
(Hotelling’s T-squared), VIP (variable Importance for the projection), KF (kernel functions;
rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot), type (C-svc and nu-svc), C
(regularization parameter; 100, 500.5, and 1000), Acct (overall accuracy for training dataset),



Accv (overall accuracy for validation dataset), Ser (sensibility for training dataset), Sev
(sensibility for validation dataset), Spr (specificity for training dataset), Spv (specificity for
validation dataset), Pt (precision for training dataset), Prv (precision for validation dataset),
Rer (recall for training dataset), Rev (recall for validation dataset), Fsr (F-score for training
dataset), Fsv (F-score for validation dataset), AUCt (area under the Receiver Operating
Characteristic curve for training dataset), AUCt (area under the Receiver Operating
Characteristic curve for validation dataset), MCCr (Matthews correlation coefficient for
training dataset) and MCCv (Matthews correlation coefficient for validation dataset).

Fig. 38. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Support Vector Machines (LV-SVM)
model considering simultaneously the data approach: time-domain approach (TDA),
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain
approach-block-scale soft (TFDABS), and the SVM’s hyperparameters and number of latent
variables (NLVs). Results of the PLSR model are presented for the screened model; regressor
variables with VIP values lower than 0.5 were removed to improve model robustness. NPLSR
(computed number of PLSR components), R? (coefficient of determination for training
dataset), Q? (coefficient of determination for K-Fold cross validation dataset), RMSEtr (root
mean square error for training dataset), RMSEcy (root mean square error for K-Fold cross
validation dataset), RSS (residual sum squares), T? (Hotelling’s T-squared), VIP (variable
Importance for the projection), KF (kernel functions; rbfdot, polydot, laplacedot, vanilladot,
besseldot, and anovadot), type (C-svc and nu-svc), C (regularization parameter; 100, 500.5,
and 1000), Acct (overall accuracy for training dataset), Accv (overall accuracy for validation
dataset), Ser (sensibility for training dataset), Sev (sensibility for validation dataset), Spr
(specificity for training dataset), Spv (specificity for validation dataset), Prr (precision for
training dataset), Prv (precision for validation dataset), Rer (recall for training dataset), Rev
(recall for validation dataset), Fst (F-score for training dataset), Fsv (F-score for validation
dataset), AUCt (area under the Receiver Operating Characteristic curve for training dataset),
AUCT (area under the Receiver Operating Characteristic curve for validation dataset), MCCr
(Matthews correlation coefficient for training dataset) and MCCy (Matthews correlation
coefficient for validation dataset).



Fig. 39. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Random Forest (LV-RF) model
considering simultaneously the data approach: time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale
soft (TFDABS), and the RF’s hyperparameters and number of latent variables (NLVs).
Results of the PLSR model are presented for the screened model; regressor variables with
VIP values lower than 0.5 were removed to improve model robustness. NPLSR (computed
number of PLSR components), R? (coefficient of determination for training dataset), Q?
(coefficient of determination for K-Fold cross validation dataset), RMSErr (root mean square
error for training dataset), RMSEcy (root mean square error for K-Fold cross validation
dataset), RSS (residual sum squares), T? (Hotelling’s T-squared), VIP (variable Importance
for the projection), DTe (decision tree), NTs (number of trees; 50, 500 1000 5000 10000),
Acct (overall accuracy for training dataset), Accv (overall accuracy for validation dataset), Ser
(sensibility for training dataset), Sev (sensibility for validation dataset), Syt (specificity for
training dataset), Spv (specificity for validation dataset), Pit (precision for training dataset),
Prv (precision for validation dataset), Rer (recall for training dataset), Rev (recall for
validation dataset), Fsr (F-score for training dataset), Fsv (F-score for validation dataset),
AUCT (area under the Receiver Operating Characteristic curve for training dataset), AUCr
(area under the Receiver Operating Characteristic curve for validation dataset), MCCr
(Matthews correlation coefficient for training dataset) and MCCy (Matthews correlation
coefficient for validation dataset).

Fig. 40. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Naive Bayes (LV-NB) model
considering simultaneously the data approach: time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale
soft (TFDABS), and the NB’s hyperparameters and number of latent variables (NLVs).
Results of the PLSR model are presented for the screened model; regressor variables with
VIP values lower than 0.5 were removed to improve model robustness. NPLSR (computed
number of PLSR components), R? (coefficient of determination for training dataset), Q?
(coefficient of determination for K-Fold cross validation dataset), RMSErr (root mean square
error for training dataset), RMSEcv (root mean square error for K-Fold cross validation
dataset), RSS (residual sum squares), T? (Hotelling’s T-squared), VIP (variable Importance
for the projection), Accv (overall accuracy for validation dataset), Set (sensibility for training
dataset), Sev (sensibility for validation dataset), Syt (specificity for training dataset), Spv
(specificity for validation dataset), Pt (precision for training dataset), Prv (precision for
validation dataset), Ret (recall for training dataset), Rev (recall for validation dataset), Fsr (F-
score for training dataset), Fsv (F-score for validation dataset), AUCt (area under the Receiver
Operating Characteristic curve for training dataset), AUCt (area under the Receiver
Operating Characteristic curve for validation dataset), MCCr (Matthews correlation
coefficient for training dataset) and MCCy (Matthews correlation coefficient for validation
dataset).



Fig. 41. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Linear Discriminant Analysis (LV-
LDA) model considering simultaneously the data approach: time-domain approach (TDA),
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain
approach-block-scale soft (TFDABS), and number of latent variables (NLVs). Results of the
PLSR model are presented for the screened model; regressor variables with VIP values lower
than 0.5 were removed to improve model robustness. NPLSR (computed number of PLSR
components), R? (coefficient of determination for training dataset), Q> (coefficient of
determination for K-Fold cross validation dataset), RMSETr (root mean square error for
training dataset), RMSEcv (root mean square error for K-Fold cross validation dataset), RSS
(residual sum squares), T? (Hotelling’s T-squared), VIP (variable Importance for the
projection), Accv (overall accuracy for validation dataset), Ser (sensibility for training dataset),
Sev (sensibility for validation dataset), Spr (specificity for training dataset), Spv (specificity
for validation dataset), P;r (precision for training dataset), Prv (precision for validation
dataset), Ret (recall for training dataset), Rev (recall for validation dataset), Fst (F-score for
training dataset), Fsv (F-score for validation dataset), AUCr (area under the Receiver
Operating Characteristic curve for training dataset), AUCt (area under the Receiver
Operating Characteristic curve for validation dataset), MCCt (Matthews correlation
coefficient for training dataset) and MCCy (Matthews correlation coefficient for validation
dataset).

Fig. 42. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Quadratic Discriminant Analysis (LV-
QDA) model considering simultaneously the data approach: time-domain approach (TDA),
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain
approach-block-scale soft (TFDABS), and number of latent variables (NLVs). Results of the
PLSR model are presented for the screened model; regressor variables with VIP values lower
than 0.5 were removed to improve model robustness. NPLSR (computed number of PLSR
components), R? (coefficient of determination for training dataset), Q> (coefficient of
determination for K-Fold cross validation dataset), RMSETr (root mean square error for
training dataset), RMSEcv (root mean square error for K-Fold cross validation dataset), RSS
(residual sum squares), T?> (Hotelling’s T-squared), VIP (variable Importance for the
projection), Accv (overall accuracy for validation dataset), Ser (sensibility for training dataset),
Sev (sensibility for validation dataset), Syt (specificity for training dataset), Spv (specificity
for validation dataset), Pt (precision for training dataset), Prv (precision for validation
dataset), Ret (recall for training dataset), Rev (recall for validation dataset), Fsr (F-score for
training dataset), Fsv (F-score for validation dataset), AUCt (area under the Receiver
Operating Characteristic curve for training dataset), AUCt (area under the Receiver
Operating Characteristic curve for validation dataset), MCCr (Matthews correlation
coefficient for training dataset) and MCCy (Matthews correlation coefficient for validation
dataset).



Fig. 43. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Generalized Linear Model (LV-GLM)
considering simultaneously the data approach: time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale
soft (TFDABS), and number of latent variables (NLVs). Results of the PLSR model are
presented for the screened model; regressor variables with VIP values lower than 0.5 were
removed to improve model robustness. NPLSR (computed number of PLSR components),
R? (coefficient of determination for training dataset), Q? (coefficient of determination for K-
Fold cross validation dataset), RMSETr (root mean square error for training dataset),
RMSEcv (root mean square error for K-Fold cross validation dataset), RSS (residual sum
squares), T? (Hotelling’s T-squared), VIP (variable Importance for the projection), Accv
(overall accuracy for validation dataset), Set (sensibility for training dataset), Sev (sensibility
for validation dataset), Syt (specificity for training dataset), Spv (specificity for validation
dataset), Pt (precision for training dataset), Prv (precision for validation dataset), Rer (recall
for training dataset), Rev (recall for validation dataset), Fsr (F-score for training dataset), Fsv
(F-score for validation dataset), AUCt (area under the Receiver Operating Characteristic
curve for training dataset), AUCT (area under the Receiver Operating Characteristic curve for
validation dataset), MCCrt (Matthews correlation coefficient for training dataset) and MCCy
(Matthews correlation coefficient for validation dataset).

Fig. 44. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Random Forest-Variable Selection-Latent Variable-
Support Vector Machines (RF-VS-LV-SVM) model considering simultaneously the data
approach: time-domain approach (TDA), frequency-domain approach (FDA), time-
frequency-domain approach (TFDA), time-frequency-domain approach-block-scale hard
(TFDABH) and time-frequency-domain approach-block-scale soft (TFDABS) and the
SVM'’s hyperparameters. Results of the PLSR model are presented for the screened model;
regressor variables with VIP values lower than 0.5 were removed to improve model
robustness. NPLSR (computed number of PLSR components), R? (coefficient of
determination for training dataset), Q> (coefficient of determination for K-Fold cross
validation dataset), RMSETr (root mean square error for training dataset), RMSEcv (root
mean square error for K-Fold cross validation dataset), RSS (residual sum squares), T?
(Hotelling’s T-squared), VIP (variable Importance for the projection), KF (kernel functions;
rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot), type (C-svc and nu-svc), C
(regularization parameter; 100, 500.5, and 1000), Acct (overall accuracy for training dataset),
Accv (overall accuracy for validation dataset), Ser (sensibility for training dataset), Sev
(sensibility for validation dataset), Spr (specificity for training dataset), Spv (specificity for
validation dataset), Pt (precision for training dataset), Prv (precision for validation dataset),
Ret (recall for training dataset), Rev (recall for validation dataset), Fst (F-score for training
dataset), Fsv (F-score for validation dataset), AUCr (area under the Receiver Operating
Characteristic curve for training dataset), AUCt (area under the Receiver Operating
Characteristic curve for validation dataset), MCCr (Matthews correlation coefficient for
training dataset) and MCCy (Matthews correlation coefficient for validation dataset).



Fig. 45. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Random Forest-Variable Selection-Latent Variable-
Random Forest (RF-VS-LV-RF) model considering simultaneously the data approach: time-
domain approach (TDA), frequency-domain approach (FDA), time-frequency-domain
approach (TFDA), time-frequency-domain approach-block-scale hard (TFDABH) and time-
frequency-domain approach-block-scale soft (TFDABS) and the RF’s hyperparameters.
Results of the PLSR model are presented for the screened model; regressor variables with
VIP values lower than 0.5 were removed to improve model robustness. NPLSR (computed
number of PLSR components), R? (coefficient of determination for training dataset), Q?
(coefficient of determination for K-Fold cross validation dataset), RMSErr (root mean square
error for training dataset), RMSEcy (root mean square error for K-Fold cross validation
dataset), RSS (residual sum squares), T? (Hotelling’s T-squared), VIP (variable Importance
for the projection), DTe (decision tree), NTs (number of trees; 50, 500, 1000, 5000 and
10000), Acct (overall accuracy for training dataset), Accv (overall accuracy for validation
dataset), Ser (sensibility for training dataset), Sev (sensibility for validation dataset), Spr
(specificity for training dataset), Spv (specificity for validation dataset), Prr (precision for
training dataset), Prv (precision for validation dataset), Rer (recall for training dataset), Rev
(recall for validation dataset), Fst (F-score for training dataset), Fsv (F-score for validation
dataset), AUCT (area under the Receiver Operating Characteristic curve for training dataset),
AUCT (area under the Receiver Operating Characteristic curve for validation dataset), MCCr
(Matthews correlation coefficient for training dataset) and MCCy (Matthews correlation
coefficient for validation dataset).

Fig. 46. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of the optimized Latent Variable-Support Vector Machines
(LV-SVM), Latent Variable-Random Forest (LV-RF), Latent Variable-Naive Bayes (LV-
NB), Latent Variable-Linear Discriminant Analysis (LV-LDA), Latent Variable-Quadratic
Discriminant Analysis (LV-QDA), Latent Variable-Generalized Linear Model (LV-GLM),
Random Forest-Variable Selection-Latent Variable-Support Vector Machines (RF-VS-LV-
SVM), Random Forest-Variable Selection-Latent Variable-Random Forest (RF-VS-LV-RF),
Random Forest-Variable Selection-Latent Variable-Naive Bayes (RF-VS-LV-NB), Random
Forest-Variable Selection-Latent Variable- Linear Discriminant Analysis (RF-VS-LV-
LDA), Random Forest-Variable Selection-Latent Variable- Quadratic Discriminant Analysis
(RF-VS-LV-QDA) and Random Forest-Variable Selection-Latent Variable- Generalized
Linear Model (RF-VS-LV-GLM) models. NPLSR (computed number of PLSR components),
R? (coefficient of determination for training dataset), Q* (coefficient of determination for K-
Fold cross validation dataset), RMSErr (root mean square error for training dataset),
RMSEcv (root mean square error for K-Fold cross validation dataset), RSS (residual sum
squares), T? (Hotelling’s T-squared), VIP (variable Importance for the projection), Acct
(overall accuracy for training dataset), Accv (overall accuracy for validation dataset), Ser
(sensibility for training dataset), Sev (sensibility for validation dataset), Syt (specificity for
training dataset), Spv (specificity for validation dataset), Pit (precision for training dataset),
Prv (precision for validation dataset), Rer (recall for training dataset), Rev (recall for
validation dataset), Fst (F-score for training dataset), Fsv (F-score for validation dataset),



AUCT (area under the Receiver Operating Characteristic curve for training dataset), AUCr
(area under the Receiver Operating Characteristic curve for validation dataset), MCCr
(Matthews correlation coefficient for training dataset) and MCCy (Matthews correlation
coefficient for validation dataset).

Fig. 47. Optimal Latent Variables (LVs) selected using the Mean Decrease Accuracy (MDA,
%) criterion from the Random Forest (RF) model. This eigenspace was employed for
calibration and validation of the Random Forest-Variable Selection-Latent Variable-Random
Forest (RF-VS-LV-RF) framework. Using frequency-domain (FDA) features to feed the RF-
VS-LV-RF yielded the best-performing optimized model (RF-VS-LV-RF-FDA). Variable
importance of each LV in maximizing sample classification (with vs. without bone
fragments) according to RF accuracy (A). Loading plots of the 30 most important FDA
energy-magnitude-distribution ultrasound parameters ranked by MDA (B to H). Parameters
include My (zero-order moment), F; (center frequency of the phase spectrum), MP (maximum
peak of the frequency spectrum), VAR, (spectral variance of the phase spectrum), SKE;s,
(spectral skewness of the phase spectrum), KURg, (spectral kurtosis of the phase spectrum),
and ENTj, (spectral entropy of the phase spectrum).

Fig. 48. Three-dimensional score plots of the nine most important Latent Variables (LVs;
Fig. 47) selected by the Mean Decrease Accuracy (MDA) criterion from the Random Forest-
Variable selection (RF-VS) strategy. Panels (A to C) show representative combinations of
principal components (PCs) derived from the frequency-domain (FDA) features, while panel
(D) presents the two-dimensional score projection of PC70 vs PC1 for clustering comparison.
Sample groups correspond to Control and different bone fragment defect sizes (2.0%1.5 cm,
2.0x1.0 cm, 1.5%0.3 cm, 1.0%0.3 cm, and 0.5 x 0.3 cm). This selected eigenspace was used
to feed the RF-VS-LV-RF yielded the best-performing optimized model (RF-VS-LV-RF-
FDA).
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Fig. 18S. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-domain approach (TDA), shown as a function of the SVM
hyperparameters and the number of latent variables (NLVs) tested. Results of overall
accuracy (Acc) are reported separately for the training (75%) and the validation (25%)
datasets.

Fig. 28S. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the frequency-domain approach (FDA), shown as a function of the SVM
hyperparameters and the number of latent variables (NLVs) tested. Results of overall
accuracy (Acc) are reported separately for the training (75%) and the validation (25%)
datasets.



Fig. 3S. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-frequency-domain approach (TFDA), shown as a function of the
SVM hyperparameters and the number of latent variables (NLVs) tested. Results of overall
accuracy (Acc) are reported separately for the training (75%) and the validation (25%)
datasets.

Fig. 4S. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-frequency-domain approach-block-scale hard (TFDABH), shown
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested.
Results of overall accuracy (Acc) are reported separately for the training (75%) and the
validation (25%) datasets.

Fig. 5S. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-frequency-domain approach-block-scale soft (TFDABS), shown
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested.
Results of overall accuracy (Acc) are reported separately for the training (75%) and the
validation (25%) datasets.



LIST OF TABLES

Table 1. Summary of the Support Vector Machine (SVM) configuration used for supervised
modeling of bone fragment detection in poultry meat. The table reports the R function,
associated R packages, selected hyperparameters, tuning ranges, and the design of
experiments (DoE) applied in the analysis.

Table 2. Summary of the Random Forest (RF) configuration used for supervised modeling
of bone fragment detection in poultry meat. The table reports the R function, associated R
packages, selected hyperparameters, tuning ranges, and the design of experiments (DoE)
applied in the analysis.

Table 3. Summary of the Naive Bayes (NB) configuration used for supervised modeling of
bone fragment detection in poultry meat. The table reports the R function, associated R
packages, selected hyperparameters, tuning ranges, and the design of experiments (DoE)
applied in the analysis.

Table 4. Summary of the Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA) and Generalized Linear Model (GLM) configuration used for supervised
modeling of bone fragment detection in poultry meat. The table reports the R function,
associated R packages, selected hyperparameters, tuning ranges, and the design of
experiments (DoE) applied in the analysis.

Table 5. Random Forest-Variable Selection-Latent Variable-Machine Learning (RF-VS-LV-
ML) approach. Design of Experiments (DoE) for RF-VS-LV-Support Vector Machine (RF-
VS-LV-SVM), RF-VS-LV-Random Forest (RF-VS-LV-RF), RF-VS-LV-Naive Bayes (RF-
VS-LV-NB), RF-VS-LV-Linear Discriminant Analysis (RF-VS-LV-LDA), RF-VS-LV-
Quadratic Discriminant Analysis (RF-VS-LV-QDA) and RF-VS-LV-Generalized Linear
Model (RF-VS-LV -GLM).

Table 6. Ultrasound parameters computed in the time-domain (energy-magnitude related and
velocity) and thickness for each bone size and location within the sample. Multifactor
ANOVA homogeneous groups.

Table 7. Ultrasound parameters computed in the time-domain (energy-distribution) for each
bone size and location within the sample. Multifactor ANOV A homogeneous groups.

Table 8. Ultrasound parameters computed in the frequency-domain (energy-magnitude
related) for each bone size and location within the sample. Multifactor ANOVA
homogeneous groups.

Table 9. Ultrasound parameters computed in the frequency-domain (energy-distribution) for
each bone size and location within the sample. Multifactor ANOV A homogeneous groups.



Table 10. Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control statistics
for detection of bone fragments using time-domain approach (TDA).

Table 11. Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control statistics
for detection of bone fragments using frequency-domain approach (FDA).

Table 12. Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control statistics
for detection of bone fragments using time-frequency domain approach (TFDA).

Table 13. Classification performance of the Residual Sum Squares (RSS) and Hotelling’s T-
squared (T?) multivariate control statistics in the detection of varying-size bone fragments
using the time-domain (TDA), frequency-domain (FDA) and time-frequency domain
(TFDA) approaches.

Table 14. Statistical results of Partial Least Square Regression (PLSR) model fitting to assess
the influence of data approach, hyperparameters belonging to the Latent Variable-Support
Vector Machine (LV-SVM) and Latent Variable-Random Forest (LV-RF) and the number of
latent variables (NLVs) used in model tunning.

Table 185. Statistical results of Partial Least Square Regression (PLSR) model fitting to assess
the influence of data approach, hyperparameters belonging to the Latent Variable-Naive
Bayes (LV-NB) and Latent Variable-Linear Discriminant Analysis (LV-LDA) and the
number of latent variables (NLVs) used in model tunning.

Table 16. Statistical results of Partial Least Square Regression (PLSR) model fitting to assess
the influence of data approach, hyperparameters belonging to the Latent Variable-Quadratic
Discriminant Analysis (LV-QDA) and Latent Variable-Generalized Linear Model (LV-
GLM) and the number of latent variables (NLVs) used in model tunning.

Table 17. Statistical results of Partial Least Square Regression (PLSR) model fitting to assess
the influence of data approach and hyperparameters belonging to each Machine Learning
model.

Table 18. Multi-objective optimized Latent Variable-Machine Learning (LV-ML) models
for maximizing bone fragment detection in chicken breast samples. Results are expressed as
mean + standard error and presented separately for training (75%) and validation (25%)
datasets.



Table 19. Multi-objective optimized Latent Variable-Machine Learning (LV-ML) and
Random Forest-Variable Selection-Latent Variable-Machine Learning (RF-VS-LV-ML)
models for maximizing bone fragment detection in chicken breast samples. Results are

expressed as mean =+ standard error and presented separately for training (75%) and validation
(25%) datasets.

Table 20. Multi-objective optimized Random Forest-Variable Selection-Latent Variable-
Machine Learning (RF-VS-LV-ML) models for maximizing bone fragment detection in
chicken breast samples. Results are expressed as mean + standard error and presented
separately for training (75%) and validation (25%) datasets.

Table 21. Classification performance of the optimized Random Forest-Variable Selection-
Latent Variable-Random Forest (RF-VS-LV-RF) model using frequency-domain (FDA)
features, yielding the best-performing configuration (RF-VS-LV-RF-FDA) for detecting
bone fragments (BF) of varying sizes in chicken breast samples.

Supplementary material

Table 1S. Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control statistics
for detection of bone fragments using feature-extraction time-domain approach (feTDA).

Table 2S. Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control statistics
for detection of bone fragments using feature-extraction frequency-domain approach
(feFDA).

Table 3S. Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control statistics
for detection of bone fragments using feature-extraction time-frequency domain approach
(feTFDA).



1. Introduction

The poultry meat industry has undergone a rapid expansion in recent years, and it is currently
the most produced meat worldwide (Aggrey et al., 2023; Fang et al., 2023). The consumption
of poultry meat is increasing, due to its affordability, high nutritional value, and the large
variety of derived processed products (Jiang et al., 2018). However, poultry meat production
encounters several challenges, primarily related to disease management and the assurance of
product quality and safety. Moreover, another significant concern is the presence of foreign
bodies (FBs) in the final manufactured products.

Physical contamination resulting from the presence of FBs in food products poses significant
health risks to consumers and can harm a company’s reputation and legal compliance, since
it has been recognized as the primary source of consumers’ complaints received by food
manufacturing companies (Edward and Stringer, 2007). In fact, consumer tolerance for any
form of food contamination is decreasing, particularly for FBs such as wood, metal
fragments, plastic particles, and bone fragments, as FBs may carry pathogens and
microorganisms or cause physical harm when ingested (Djekic et al., 2017).

The detection of FBs represents a crucial bottleneck in the management of food safety and
quality within poultry meat industry (Nielsen et al., 2013), and, in particular, bone fragment
(BF) detection is a persistent problem. During the rapid mechanical deboning process,
industrial machinery separates chicken breasts from the skeleton, which can result in bone
fragments becoming embedded in the fillets. Detecting these fragments in-line and real-time
is critical to ensure consumer’ safety. Therefore, there is an urgent need for non-invasive,
cost-effective, and intelligent systems for real-time meat product quality and safety
monitoring; but still, the automation of the food manufacturing process remains a formidable
challenge (Ali and Hashim, 2021). In this context, achieving automatic and dependable
detection of FBs stands as a primary objective for the meat industry among the ongoing
digital revolution, the incorporation of resilient industrial sensors and computer-assisted
algorithms to facilitate real-time decision-making is essential (Belaud et al., 2019).

Traditional analytical techniques relying on electromagnetic radiation, including magnetic
detectors, X-rays, and hyperspectral sensors, have been extensively used in the detection of
FBs within food products (Yaqoob et al., 2021). These methods come with certain limitations
for food inspection, such as the high cost of the equipment and its maintenance, challenges
associated with their integration into food processing lines, and, in some cases, limited
penetration capability to thoroughly analyze the internal structure of food (Pérez-
Santaescolastica et al., 2019).

Regarding the detection of BFs in the meat industry, Yoon et al. (2007) employed a system
based on Near-Infrared (NIR) spectroscopy for detecting BFs in chicken breast samples,
while McFarlane et al. (2003) successfully utilized the X-ray backscatter technique to identify
chicken clavicles and near-surface bone pieces in chicken breast pieces. Further, Lim et al.
(2022) tested the X-ray imaging technique to detect soft plastic bullets within chicken breast
samples, representing an improvement over conventional X-ray methods, which cannot



discern soft FBs. Nevertheless, X-ray-based methods, in general, are characterized by a
significant drawback: they are expensive to operate, need costly equipment, pose risks to
operators, and require complex post-image processing (McFarlane et al., 2003).

Ultrasound technology (US) has been employed as a valuable tool for the non-destructive
testing of food materials. Ultrasound offers advantages over the aforementioned
technologies: it enables faster inspection, it is cost-efficient, versatile, easy to manipulate,
safe for personnel, and suitable for real-time in-line application (Farifas et al., 2021), which
is in accordance with the goals set by the Fourth Industrial Revolution (Industry 4.0) (Farinas
et al., 2023).

Consequently, US has emerged as a promising technology for detecting FB in foods. In the
food industry, the conventional method for analyzing food products and processes relies on
the contact ultrasonics (CUS) technology. In CUS, sensors require close contact with the food
material to eliminate air gaps at the sensor-sample interface and enhance energy transfer into
the sample. This contact is achieved through the use of coupling materials such as water, oil,
or glycerine (Sanchez-Jiménez et al., 2023).

More recently, non-contact ultrasonics (NCUS) technology has gained recognition in the
food industry and is considered highly suitable for non-destructive analysis of food products
(Farifias et al., 2021). Although this technology is still in the development phase for its
industrial application, it shows great promise for future in-line applications, particularly in
the detection of FBs.

In the meat sector, the CUS measurements have been satisfactorily employed for monitoring
the physicochemical modifications in beef steaks during the dry salting process (Farifias et
al., 2023), for on-line monitoring of the ham salting process (Garcia-Pérez et al., 2019) or for
the characterization of dry-cured ham (Corona et al., 2013), among other applications.
Regarding the detection of BF, Correia et al. (2008) designed and assembled an ultrasonic
system based on CUS in pulse-echo mode to detect bone fragments in mechanically deboned
chicken breasts. The effectiveness of their system for detecting BFs of different sizes was
evaluated, showing an acceptable detection of fragments ranging from 6 mm?to 16 mm?,
based on attenuation values. However, the authors claimed important limitations in the
application of their apparatus, being the primary drawback the significant variation in the
obtained amplitude ratio values, leading to inconsistent and unreliable measurements. To
solve this problem, another ultrasonic sensing modes such as through-transmission and pitch
and catch can also be assessed (Mohd Khairi et al., 2015).

An additional benefit of US lies in its capacity for spatial analysis of food products by creating
ultrasound imaging (USI). USI serves as a valuable non-destructive tool for inspecting food
by scanning the surface of the product (Gan, 2020). It offers a spatial representation of
internal characteristics, facilitating the evaluation of physicochemical attributes related to
composition, texture or internal irregularities. The applicability of ultrasound imaging (USI)
for identifying internal gas pockets and defects (such as cracks) was assessed in Swiss-Type
Cheese by Eskelinen et al. (2007). Consequently, the potential of USI can also be explored
for the detection of BF within chicken breasts, regardless of their specific location.



The massive volume of data generated by using US sensors in real-time requires robust
mathematical models to extract relevant information from ultrasonic signals. In this sense,
pattern recognition techniques constitute an advanced tool that is embraced by Industry 4.0
in the context of digitalization purposes (Ozturk et al., 2023). Many complex decision-
making processes are involved in the food manufacturing processes. Thus, food industry can
definitely benefit from these mathematical tools (Ni et al., 2020).

Pattern recognition based-models are mainly classified into two categories: unsupervised
techniques such as the Principal Component Analysis (PCA) and hierarchical cluster analysis
(HCA); and supervised techniques such as Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA), Generalized Linear Model (GLM), Partial Least Squares
(PLS), and Soft Independent Modelling by Class Analogy (SIMCA). Additionally, in the
machine learning (ML) field, supervised algorithms for regression and classification
(decision trees-DTe, Random Forest-RF, Support Vector Machine-SVM, k-nearest-
neighbors-kNN, Naive Bayes-NB, among others) are also used (Jiménez-Carvelo et al.,
2019).

The Principal Component Analysis (PCA) is one of the most important mathematical
technique used in the manufacturing and process industries (Macgregor and Kourti, 1995). It
is a statistical method used to simplify complex datasets by reducing their dimensionality. It
achieves this by applying an orthogonal transformation that converts a group of possibly
correlated variables into a new set of variables that are linearly independent from one another,
referred to as principal components (Li et al., 2025). PCA is one of the most established
techniques for exploratory data analysis in chemometrics (Godoy et al., 2014). Its ability to
capture the main sources of variance within multivariate datasets, especially those with
collinear variables or ill-conditioned matrices, makes it particularly suitable for applications
involving high-dimensional ultrasonic or spectroscopic data (Sanchez-Jiménez et al., 2023).
By projecting the original observations into a reduced latent space defined by uncorrelated
principal components, PCA simplifies complex datasets and enhances interpretability, while
also enabling the development of a statistical model for process monitoring and defect
detection (Villalba et al., 2019).

In this sense, Statistical Process Control (SPC) has become a key methodology in
manufacturing and process industries for tracking process behavior over time. Its main goal
is to ensure that critical variables remain within acceptable limits, indicating that the process
operates under statistical control (where only inherent), common-cause variation is present.
Tools such as Shewhart, Cumulative Sum (CUSUM), and Exponentially Weighted Moving
Average (EWMA) control charts are employed to detect deviations caused by special or
assignable causes. Identifying and addressing these causes enables sustained process and
quality improvements through corrective actions or operational adjustments. Conventional
Multivariate Statistical Process Control (MSPC) techniques aim to track the stability of the
process mean by constructing control charts based on Hotelling’s T-square statistic derived
from the original set of measured variables. This method assumes a fixed covariance structure
and requires the inversion of the estimated covariance matrix, which becomes problematic
when the number of variables approaches or exceeds the number of observations (common



in modern industrial data-rich environments). Additionally, these approaches rely on
complete, noise-free datasets, a condition often unmet in automated industrial settings.
Therefore, the MSPC faces limitations in scalability and robustness when applied to high-
dimensional or incomplete process data, restricting its practical deployment in complex
manufacturing systems (Villalba et al., 2019).

The use of PCA in the MSPC framework represents an important advantage since it avoids
the computational and practical limitations associated with traditional SPC that require
inversion of high-dimensional covariance matrices. By projecting the original correlated
variables onto a reduced latent space composed of a few principal components, PCA
simplifies the monitoring task while preserving the essential variance structure of the process.
Control charts developed in this low-dimensional subspace function as multivariate process
performance indices, offering a clear and interpretable representation similar to univariate
SPC charts. At the same time, they leverage the full multivariate information, resulting in
greater sensitivity to process anomalies. Furthermore, this approach is inherently more robust
to missing or noisy data, making it highly suitable for complex, automated environments
(Babamoradi et al., 2013).

In the PCA-MSPC, the monitoring of process deviations is performed using a limited number
of principal components to construct the Hotelling’s T-square statistic in the reduced latent
space. This statistic quantifies deviations in the most informative principal variables , which
capture the dominant sources of variation within the process. However, since Hotelling’s T-
square at each component reflects only the variability within the subspace defined by the
retained principal components, it is complemented by the Residual Sum Square statistic,
which measures the residual variation orthogonal to this subspace. By using both Hotelling’s
T-square and Residual Sum Square in a dual-chart monitoring strategy, enhances the fault
detection in multivariate systems (Lemaigre et al., 2016). PCA-MSPC has been successfully
applied to various food-related monitoring tasks, including the supervision of wine quality
during fermentation (Cavaglia et al., 2020), the detection of melamine adulteration in milk
through vibrational spectroscopy (Fernandez Pierna et al., 2016), and the authentication of
food products based on multivariate profiles (Preys et al., 2007). The authors reported that
the PCA-MSPC approach demonstrated high computational efficiency suitable for online
implementation, providing a robust and practical tool for real-time process monitoring and
detection of anomalies in agro-food systems.

The data used in food industry analysis ranges from unstructured (text, audio, video, images
and among others) to highly structured data (relational databases, spreadsheets, CSV files,
among others) (Jin et al., 2020). Due to the demonstrated robustness of PCA in food quality
inspection, this method facilitates the analysis of unstructured datasets (such as USIs) within
the framework of Multivariate Image Analysis (MIA). MIA involves the application of
multivariate techniques to extract both spectral and spatial information from images (Prats-
Montalban et al., 2011). This approach involves applying PCA to an unfolded multivariate
image, resulting in an unsupervised classification of image pixels based on their spectral
characteristics, which are represented in the PCA score space. The extracted information is
subsequently analyzed by iteratively segmenting regions of interest within the PCA score



space and mapping the corresponding pixels back onto the original image. This procedure,
commonly known as masking, enables the identification and extraction of relevant spectral
features from the image (Duchesne et al., 2012).

MIA is useful as an explorative technique, clustering, defect detection and MSPC (Prats-
Montalban et al., 2009). MIA-MSPC can be applied twofold depending on the goal in hand:
the first approach operates at the pixel level, requiring the monitoring and/or detection of
defects or phenomena occurring within the individual captured images and the second
approach entails process control based on the analysis of the image as a whole. Regardless
the approach and following the MIA-MSPC framework, the first step involves calibrating a
PCA model using a set of images corresponding to Normal Operating Conditions (NOC or
Control), those acquired under the assumption that the process is functioning correctly. From
this reference model, two key statistics such as Hotelling’s T-square and Residual Sum
Squares can be computed from the scores and residuals, respectively. Then, once a PCA
model has been built on some NOC images and the Hotelling’s T-square and Residual Sum
Squares control limits have been established, the pixels of new images can be projected onto
the calibrated PCA model. In this way, it becomes possible to identify which pixels exceed
the statistical thresholds of model. Within this context, rather than visualizing the full
Hotelling’s T-square and Residual Sum Squares images, it is more informative to highlight
only those pixels that exhibit extreme behavior within the model (exceeding the Hotelling’s
T-square limit) or that fall outside the model (surpassing the Residual Sum Squares limit)
(Prats-Montalban et al., 2011). The feasibility of MIA-MSPC has been demonstrated in
several works including the monitoring of colour random texture (Reis, 2015), the on-line
monitoring of a freeze-drying process for pharmaceutical products in vials (Colucci et al.,
2019) and the defect Detection in Random Colour Textures (Lopez et al., 2006).

The PLS model is another well-kwon advanced multivariate statistical tool widely used in
chemometrics for performing multivariate regression/classification. PLS is an iterative
method for finding latent variables that maximize covariance between the input and response
variables (Duma et al., 2024). Although PLS is also commonly latent-structure based model
used in multivariate process monitoring (especially when there is a known response variable),
PCA is often preferred when the objective is unsupervised (no response variable is available)
defect detection, data visualization, or latent space modeling without requiring prior class
information images (Prats-Montalban et al., 2011). In any case, if both process variables and
product quality data are available, multivariate statistical predictive models based on
projection to latent structures, such as PLS, can also be employed (Prats-Montalban et al.,
2012; Villalba et al., 2019).

Since the detection of BFs in the poultry meat industry is an unsupervised, data-driven task
(due to the lack of prior labeling of samples) MIA-MSPC based on PCA emerges as the most
suitable approach. In fact, MIA-MSPC based on PCA results in the detection of BF of
different sizes within chicken breast samples using USI have been previously reported by
Collazos-Escobar et al. (2025). The authors reported that USI obtained by CUS enable the
detection of BF through statistically significant changes in both energy-magnitude and
energy-distribution ultrasound parameters at the USI pixel level, highlighting their influence



on signal attenuation, spectral features, and variability depending on fragment size. The MIA-
MSPC demonstrated the feasibility of using both Hotelling’s T-square and Residual Sum
Squares statistics for the detection of BF, achieving an overall accuracy greater than 95%.

Additionally, the authors acknowledged that supervised pattern recognition approaches could
potentially be explored to enhance detection performance. Although these techniques have
shown promise in related applications (Bowler et al., 2023, 2020; Caladcad et al., 2020;
Conde et al., 2008; Sanchez-Jiménez et al., 2023; Velasquez et al., 2021b, 2019), their
implementation requires additional steps, such as the definition of a latent variable space
(from PCA as example) and careful tuning of hyperparameters to optimize model
performance. As the BF detection problem is an inherently data-driven task, exploring
alternative modeling strategies (including unsupervised/supervised machine learning
techniques) may provide valuable insights and further improvements (Collazos-Escobar et
al., 2023b). Thus, the analysis of whether supervised ML techniques can improve the results
of an unsupervised model is a relevant matter of scientific interest. Nonetheless, every effort
in exploring the balance between computational complexity and model’s likelihood should
be considered in these modeling strategies.

To elucidate whether the use of supervised ML techniques can improve upon the results
previously obtained with MIA-MSPC based on PCA in the detection of BFs, various
algorithms such as SVM, DTe, RF, NB, LDA, QDA, GLM and among others, can be
assessed. The assessment of these models in the improvement of MIA-MSPC can be
conducted using the MIA as the basis for ML’s model calibration. This procedure is
commonly carried out by the use of PCA’s scores as features in the ML model tunning. This
strategy has been successfully done in both prediction and classification tasks (Caladcad et
al., 2020; Collazos-Escobar et al., 2024, 2023a; Conde et al., 2008; Barrios-Rodriguez et al.,
2021; Sanchez-Jiménez et al., 2023). Thereby, this procedure paves the way for the analysis
and comparison between the two categories of pattern recognition based-models to address
the same data-driven problem.

In this sense, SVM have emerged as pivotal tools in ML. Its ability to handle high-
dimensional data efficiently, coupled with their applicability to both classification and
regression tasks, makes SVM reliable for complex analytical challenges and data-driven
tasks. SVM functions by identifying an optimal hyperplane that maximally separates data
points belonging to different classes (Scatigno and Festa, 2022). In real-world datasets, which
often exhibit overlapping classes, the soft-margin SVM formulation is employed. This
approach introduces slack variables and a regularization parameter, allowing a trade-off
between maximizing the margin and minimizing classification errors (Chauchard et al.,
2004). To handle non-linear patterns, SVMs utilize kernel functions that implicitly map input
features into higher-dimensional spaces where linear separation becomes more feasible.
Commonly used kernels include linear, polynomial, and radial basis function kernels. The
choice of kernel and its associated hyperparameters significantly affects model performance
and must be carefully optimized for the specific application (Scatigno and Festa, 2022).

SVMs have been widely applied in the field of food science and engineering. For instance,
SVM models have combined with near infrared spectroscopy techniques for acidity
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prediction in grapes (Chauchard et al., 2004), in determining coconut maturity level
integrating SVM and acoustic signals (Caladcad et al., 2020), in the classification of the
maturity stage of coffee cherries (Velasquez et al., 2021b) and to quantify the influence of
maturity stage on drying kinetics of coffee cherries (Velasquez et al., 2021a), in the rapid
prediction and description of the moisture content changes in achira biscuits (Collazos-
Escobar et al., 2023b) and dried coffee beans during storage (Collazos-Escobar et al., 2025a,
2025Db). In all of these applications, the authors claimed that SVM was able in handling high
dimensionality, complex and non-linearities datasets, shown promise in process improvement
and real time decision-making in the food industry.

Despite SVM’s advantages, these models have notable limitations. One of the most important
limitation is that the training process on large-scale datasets can be computationally intensive,
although recent advances in hardware and optimization algorithms have mitigated some of
these concerns (Xu et al., 2025). Moreover, model performance is highly sensitive to the
tuning of hyperparameters (such as the regularization parameter and kernel-specific
parameters) which requires careful optimization, commonly achieved through grid search,
cross-validation and strategies based on design of experiments (Collazos-Escobar et al.,
2025a). Another significant limitation of SVM is their limited interpretability, as they are
often regarded as “black-box” models. This poses challenges in domains where
understanding the contribution of individual features is essential for informed decision-
making. Nevertheless, their robustness, flexibility, and strong predictive performance
continue to make SVMs a popular choice in analytical and chemometric applications (Zhu et
al., 2024).

Another relevant technique widely used in the field of supervised ML is the RF (Gholizadeh
et al., 2020). RF have become a cornerstone in ML due to their robustness, versatility, and
ability to handle high-dimensional data. RF has proven particularly effective for modeling
complex datasets, supporting tasks such as classification, regression, and feature selection
(Otchere, 2023). RF is a classification algorithm composed of an ensemble of DTe for both
classification and regression tasks. A DTe is a hierarchical, tree-structured model that
recursively partitions the feature space into disjoint regions based on feature-based decision
rules. At each internal node, the algorithm selects a feature and a corresponding threshold
that maximizes a splitting criterion, such as Gini impurity or information gain, thereby
creating two or more nodes. This process continues recursively until a stopping condition is
achieved (such as reaching a maximum depth, a minimum number of samples per node, or
achieving complete purity in the leaf nodes). Each terminal node (leaf) assigns a class label
in classification tasks or a numerical value in regression tasks, based on the majority class or
average of the training samples contained in that node (Sun and Hu, 2017).

As an ensemble method, RF constructs multiple DTe and aggregates their outputs (using
majority voting for classification and averaging for regression) which enhances predictive
accuracy and reduces the risk of overfitting (Yeap et al., 2020). This makes it especially
suitable for the intricate and noisy datasets commonly encountered in real-scenarios. During
training process, each tree is built from a bootstrap sample of the original dataset, and at each
split, a random subset of features is considered. This randomized approach introduces



diversity among the trees, which helps reduce model variance and improve generalization
performance (Fu et al., 2014).

One of the most relevant RF advantages is its capacity to estimate feature importance of
independent variables in the tunning of a predictive/classification model (Collazos-Escobar
et al., 2024). During the training process of RF, variable importance scores are computed to
quantify the predictive contribution of each feature. These scores guide the stratified
sampling of the feature subspace when building the forest, enabling the algorithm to prioritize
highly informative independent variables while still incorporating those with lower
relevance, thereby preserving potential complementary information (Wang et al., 2023).

The assessment of variable importance can be approached through strategies such as
measuring the reduction in node impurity (e.g., Gini impurity) or evaluating the decrease in
predictive accuracy (using metrics like mean decrease accuracy or the increase in mean
squared error) when a feature is permuted (Collazos-Escobar et al., 2023a). These measures
can inform the calibration of ensemble strategies, enabling the construction of more
parsimonious and interpretable models based on feature selection results derived from RF.
This approach (tuning a model using the variable importance criterion for feature selection
from a trained RF) has been successfully applied across several applications (Chen et al.,
2018; He et al., 2021; Liberda et al., 2021; Wang et al., 2019). Additionally, RF has been
effectively employed in the food industry (Caladcad et al., 2020; Malash et al., 2025),
demonstrating its potential as a robust ML technique for quality inspection in the food
industry, including the detection of BF in chicken breast products.

The NB is another pattern recognition-supervised ML technique used in the data analytics. It
is a probabilistic (stochastic) model commonly applied to classification tasks. NB operates
under the simplifying assumption that the features within each class are independent of one
another and follow a Gaussian (normal) distribution (An and Zhang, 2025). The algorithm
calculates the conditional probability that a given data instance belongs to each class based
on its features, then assigns it to the class with the highest probability. Despite its “Naive”
assumption of feature independence, NB often performs remarkably well when this
assumption is reasonably valid. Its simplicity, computational efficiency, and effectiveness
with high-dimensional data make it a popular choice in many practical applications (Fink et
al., 2025).

In the literature there is often reported the use of the LDA, QDA and GLM as supervised
pattern recognition techniques to address classification problems in real industrial scenarios
(Nibouche et al., 2024). The idea behind of these techniques is the calibration of a classifier
based on a training dataset of labeled instances that can accurately predict new feature
observations into one of the known groups (Cabana and Lillo, 2022).

LDA is a parametric classification method based on the assumption that the classes are drawn
from multivariate normal distributions sharing an identical variance (covariance matrix). The
decision boundary is linear; a straight line in two dimensions or a hyperplane in higher-
dimensional space, and is derived using the Mahalanobis distance such that all points on the
boundary have equal posterior probability of belonging to either class. LDA is



computationally efficient and performs well when its underlying assumptions hold, but its
accuracy deteriorates when the class distributions differ substantially in dispersion or shape
(Dixon and Brereton, 2009). Similarly, QDA assumes multivariate normality of class
distributions but relaxes the requirement of equal variance/covariance matrices across
classes. This allowance produces a quadratic decision boundary capable of accommodating
classes with distinct shapes and dispersion patterns. While QDA’s flexibility enables it to
model more complex class structures, it entails estimating a greater number of parameters,
which increases the risk of overfitting, particularly in scenarios with limited training data
(Vranckx et al., 2021).

Finally, GLM extends traditional linear regression (LR) to handle non-normal response
variables such as binary, count, or skewed data. In the same way as LR, GLMs assume low
correlation among predictors, but in practice multicollinearity can inflate the variance of the
maximum likelihood estimator (Algamal, 2018). The GLM model achieves its performance
via three key components: the random component, which specifies the probability
distribution of the response variable from the exponential family (such as normal, binomial,
or Poisson); the systematic component, which represents a linear combination of the predictor
variables; and the link function, which connects the expected value of the response variable
to the linear predictor. This structure enables the model to capture non-linear relationships
between predictors and the mean of the response while maintaining interpretability (Guisset
etal., 2019).

One of the main limitations in the calibration of these supervised pattern recognition/ML
techniques (DTe, RF, SVM, NB, LDA, QDA and GLM) is the multicollinearity between
input variables in high dimensional and low-sample size real world datasets (Chen et al.,
2025). For instance, NB classifier assumes that the variables used in the calibration process
are independent (van Herwerden et al., 2022). Further, LDA, QDA and GLM also require
independent input variables in the calibration process.

In datasets where the number of samples exceeds the number of variables and the variables
exhibit low collinearity; it is feasible to compute the inverse of the variance-covariance
matrix. Nevertheless, such conditions are not common in real industrial settings, where the
inherently multivariate nature of processes tends to generate high-dimensional variable
spaces coupled with a limited number of observations, often due to the cost and complexity
of data acquisition. This poses a challenge for supervised models (DTe, RF, SVM, NB, LDA,
QDA and GLM) as these methods require the computation of covariance matrix for whole
and/or each class, and these matrices must be invertible. When the number of variables
approaches or surpasses the number of observations within a class, the covariance matrix
becomes singular or nearly singular, rendering the model computationally infeasible
(Siqueira et al., 2017). In such scenarios, dimensionality reduction techniques such as PCA
(unsupervised) and PLS become essential. These methods reduce the number of variables,
enabling the inversion of the variance-covariance matrix while retaining most of the relevant
information comprising in the new obtained latent variables (Sanchez-Jiménez et al., 2023).
A notable advantage of PCA, in particular, is its ability to compress large multivariate
datasets into a small number of orthogonal principal components that preserve the majority



of the variance present in the original data (Dixon and Brereton, 2009). Thus, the strategy of
MIA-ML (use of latent space from PCA on unfolded images for ML model tunning) becomes
promising in enhancing the predictive capability of a model based on latent structures, in
exploring improvements, reducing computational time, and achieving better detection
capability through the efficient calculation and interpretation of the most informative latent
variables (Collazos-Escobar et al., 2024; Ramtanon et al., 2025).

The integration of US technology and pattern recognition ML techniques has been previously
employed in various applications, including the monitoring of yogurt fermentation process
(Bowler et al., 2023), tracking the drying of potato slices (Sanchez-Jiménez et al., 2023), the
detection of internal cracks in Manchego cheese (Conde et al., 2008), and has also been used
for assessing the coconut maturity (Caladcad et al., 2020).

Regarding the detection of FBs, Zhao et al. (2006) implemented a monitoring system based
on CUS and Artificial Neural Networks for the detection of glass fragments in filled glass
containers. The authors report that integrating CUS and artificial intelligence techniques, they
successfully detected FBs of different sizes (accuracy>95%) within the canned beverages.
However, their application is limited to a single point ultrasound measurement per foodstuff
(Mohd Khairi et al., 2018). This issue is overcome by using USI since an ultrasonic image
enables the assessment of spatial and internal properties of a food product.

There is a notable gap in the existing literature regarding of an intelligent system for real-
time quality inspection of chicken based products. Even worst, there are no systems based on
non-invasive, non-destructive and cost-efficient technologies for the detection of FBs and
BFs in poultry meat industry. Thus, the proposed research introduces a groundbreaking
approach for the non-invasive detection of internal BFs in poultry meat through the
integration of USI, MIA, and ML. While Industry 4.0 has driven the development of
automated, real-time monitoring systems for the food industry, current industrial solutions
remain limited in detecting food contaminants embedded within the product matrix. As we
previously stated, conventional methods such as X-rays and magnetic detectors are effective
for high-density or ferrous foreign bodies (metal pieces) but fail to identify low-density FBs.
This work overcomes these limitations by leveraging ultrasound technology capability in the
analysis of internal structure of foods, the advanced MIA framework for feature extraction,
and ML for accurate detection performance of uncontaminated and contaminated foodstuffs,
enabling robust, rapid, and automated detection of BFs within poultry meat. To our
knowledge, this is the first approach of a fully integrated USI, MIA-MSPC and MIA-ML for
real-time, non-invasive detection of internal food contaminants in the poultry industry,
representing a significant advancement in food safety monitoring under the framework of
Industry 4.0. Additionally, the analysis of the same data-driven task using different strategies
based on unsupervised and supervised pattern recognition techniques also represents an
improvement towards the development of computational efficient, parsimonious and high
likelihood models to be further used in real-time industrial applications.

Comprehensive efforts should be directed toward elucidating the statistical results of
implementing a non-invasive food-inspection system for the detection of BFs founded on a
hybrid methodology that sequentially integrates unsupervised latent-structure modeling with
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supervised learning techniques, coupled with the multi-objective optimization of statistical
models and their comparative assessment in terms of feasibility for deployment in real-time
industrial environments. Consequently, contributions that advance the state of the art in
chemometrics and intelligent laboratory systems warrant thorough consideration. Therefore,
if the abovementioned ideas are considered, the purpose of this work was threefold: (i) to
experimentally determine the feasibility of USI obtained by CUS technology for detecting
BFs of varying sizes, (ii) to assess the capability integrate MIA-MSPC and USI for the
calibration of a digital model for detecting BFs within chicken breast and (iii) to analyze the
improvement in the detection capacity of statistical models by using a hybrid strategy based
MIA-ML.
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2. Materials and methods

2.1 Chicken breast samples

Skinless and boneless chicken breast samples were purchased from a local grocery store in
Valencia (Spain) and kept in the fridge at 4 °C until use (Fig. 1A). Since the ultrasound images
could not be taken in refrigerated conditions, due to the ultrasound equipment was not
adapted to work inside a refrigeration chamber, the entire chicken breast fillets were left out
of the refrigerator until they reached room temperature. The breasts were then cut into 5 X 5
cm samples with a thickness of about 1.5 cm (Fig. 1B). Samples with no BF were considered
as the control samples.
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Fig. 1. Flowchart of the main steps to prepare control and OC (out-of-control) samples. A,
B, C and D for control images, furthermore C, B, E, F, G and H for OC images.

2.2 Bone fragments

A set of bone fragments extracted from different parts of chicken skeleton was considered.
For this purpose, a whole chicken was purchased, boiled for 20 minutes at 80 °C, and then
manually deboned, in order to extract these bone fragments. The set of bone pieces used in
the experiments (Fig. 1E) consisted of a bone obtained from dorsal vertebrae with dimensions
of 2.0 x 1.5 cm (Fig. 1Ei), a fragment taken from the chest bone of 2.0 x 1.0 cm (Fig. 1Eii),
and three different fragments extracted from the chicken rib with sizes of 1.5 x 0.3 cm (Fig.
1Eiii), 1.0 x 0.3 cm (Fig. 1Eiv) and 0.5 x 0.3 cm (Fig. 1Ev).

12



2.3 Ultrasound experimental set-up

The ultrasound images were acquired using the experimental set-up described in Fig. 2. The
equipment consisted in a computer (Fig. 2A), an oscilloscope (Fig. 2B, MD0O3024, Tektronix,
WA, USA), an ultrasonic generator-receiver (Fig. 2C, 5077 PR, Olympus, Houston, TX,
USA), a pair of commercial ultrasound transducers (Fig. 2D, A314S-SU model, Panametrics,
Waltham, MA, USA) of 1 MHz central frequency and 1 cm of diameter, operating in through-
transmission mode, the food sample (Fig. 2E) and a digital caliper (Fig. 2F, 192-633 Serie,
Mitutoyo, Japan). A program was developed in LabVIEW® 2018 (National Instruments,
Austin, TX, USA) to record the ultrasonic signals.
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Fig. 2. Equipment used for ultrasound image acquisition. It consisted of one computer (A),
one oscilloscope (B), one generator-receiver (C), two ultrasonic transducers (D), food sample
(E) and digital caliper (F).

2.4 Experimental procedure

Control samples (without BF) were placed in polystyrene plates (86.4 + 0.1 mm diameter, 14
+ 0.1 mm thickness; Fig. 1C) in order to measure the ultrasound signals in the same locations
for each sample, thus obtaining the USI. To achieve this, a pre-established matrix of 25 points
(5 x 5 cm) separated every 1 cm (Fig. 1C) was previously drawn on the surface of the
polystyrene plates. Each point of this matrix corresponded to a pixel of the image (Fig. 1D).
Tap water was used to wet both the transducers and the polystyrene plate’s surface, to
improve the transmission of the transducer’s energy through the polystyrene lids.

After the imaging process, each type of bone fragment was inserted into the previously
measured control samples, using a laboratory forceps, trying to place it equidistant from each
face of the chicken breast sample. Each bone type was tested in five different locations (Fig.
1F), namely, the top-left, top-right, center, bottom-left and bottom-right, corresponding to the
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position 7, 9, 13, 17 and 19 of the pre-established matrix (Fig. 1G), respectively. Thus, OC
ultrasound images (Fig. 1 H) were obtained. Each type of bone fragment (n =5, Fig. 1E) was
analyzed in triplicate (n = 3) at each location within food samples (n = 5, Fig. 1F). Thus, a
total of 75 chicken samples (5 X 5 % 3) were obtained. However, 81 chicken breast samples
(Fig. 1B) were analyzed, since six additional samples were considered to ensure consistent
data; due to some tests had to be repeated because of measurement uncertainty. Thereby, a
dataset of 81 images of control samples and 81 images of OC were obtained.

Ultrasound images were obtained using the experimental set-up (Fig. 2) by hand scanning
the sample surface following the preestablished pattern drawn on the polystyrene plates (Fig.
1C). For each measured point, two types of ultrasound signals (each of 10k points, average
of 128 acquisitions) in the time-domain were obtained. The first one was acquired with a
receiver gain of —20 dB and used to compute the energy-related ultrasound parameters in the
time (section 2.5.1) and frequency (section 2.5.2) domains. Then, a second type of ultrasound
signal was acquired with a gain of 0 dB (Fig. 2C) to calculate the ultrasound velocity (section
2.5.1). Thus, two types of 3D images of 5 x 5 cm (spatial dimensions-2D of scanned product’s
surface) x 10k points (measured ultrasound signal at each point-1D) were acquired in every
run. Moreover, the thickness of the samples was gathered for each pixel using the digital
caliper.

2.5 Feature extraction

Different parameters related to energy (Fig. 3) and also the ultrasonic velocity were computed
at pixel level. Previous to the calculations, the ultrasound signals (signal contain in every
pixel) were baseline-corrected to eliminate any bias associated with electrical noise from the
network. This correction entailed determining the mean value of each signal within the range
of 1300—1800 points. If the mean value of the signal was below 0 V, the absolute mean value
was added to the entire signal (Fig. 3A). Conversely, if the mean value was above 0 V, it was
subtracted from the signal. Thus, each parameter summarized a channel of the image. e.g., if
six parameters were estimated from a 3D image, a new image of 5 x 5 (spatial dimensions)
X 6 (computed parameters) was obtained. The flowchart illustrating the procedure conducted
to obtain the USI, considering different feature extraction strategies, is summarized in Fig. 4.

2.5.1 Time domain analysis

Energy-magnitude ultrasound parameters such as peak-to-peak distance (PP, V; Fig. 3B),
energy (ENG, V?; Fig. 3B) and integral of signals (INT, V ps; Fig. 3B) (Bowler et al., 2023)
and ultrasound velocity (Ve, m/s) were computed in the time-domain from the ultrasound 3D
images. The PP (Eq. 1), ENG (Eq. 2) and INT (Eq. 3) were obtained from the 3D images
with signals acquired at —20 dB, while the V. was calculated from signals acquired at 0 dB.
The INT was computed by using the trapezoidal numerical method “trapz” of MATLAB®
R2023a (The MathWorks Inc., Natick, MA, USA).
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Fig. 3. Baseline correction of time-domain ultrasound signals (A) and energy-magnitude
ultrasound parameters (B).
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Fig. 4. Flowchart illustrating the ultrasound-based feature extraction procedure and the
methodological strategies implemented to identify the presence of bone fragments in out-of-
control (OC) samples using time-frequency domain approaches.

According to Caesarendra and Tjahjowidodo (2017), the variance (VAR;, V?), skewness
(SKEy), kurtosis (KUR¢) and entropy (ENT;) time-domain energy-distribution parameters
were also considered. The VAR (Eq. 4), SKE; (Eq. 5), KUR((Eq. 6) and. ENT(Eq. 7) were

computed by using “var”, “skewness”, “kurtosis” and “entropy” MATLAB functions for each
pixel of USL

PP = max(X;) — max|min(X;)| (1)

ENG = [|X¢||? ()



INT = 3iL, Xz t; (3)

N (X, —Xp)?
VAR, = —Z“l((Nfl) - 4)

=N, xy-%03/(N-1)

SKE, = o3 (5)
N Xe,—Xp)*|/(N-1)
KUR, = (2N (X Gt;) |/ ©)
_ N
ENTt - = Zi:l p(Xti)logZp(Xti) (7)

Where X is the ultrasound signal in the time-domain, Xz corresponded with the positive
values of X, X; is the mean of each ultrasound signal in the time-domain, N is the number of
elements of each ultrasound signal, t is the vector which registered the ultrasound signal’s
traveling time (us), ot the standard deviation of each ultrasound signal in time-domain and
p(Xy) 1s the probability of the occurrence of the i-th amplitude value in the discretized time-
domain ultrasound signal.

To assess the V. (Eq. 8), the time of flight (TOF, us) was firstly calculated. TOF (Eq. 9) was
computed by using Eq. 9 following the energy threshold method (ETM) described by Garcia-
Pérez et al. (2019).

L
Vel = ﬁ (8)
TOF = {0A-T )

ae

Where L (m) is the thickness of every pixel of ultrasound images, which was measured using
a digital caliper (Fig. 2F). TOA is the time-of-arrival (points) which measured the number of
points corresponding to the time required for an ultrasound wave to propagate between the
emitter transducer to the receiver transducer. The T: (number of points) is the trigger signal
and ae (100 Mpoints/s) is the acquisition speed.

2.5.2 Frequency domain analysis

The Fast Fourier Transform (FFT) was applied on the time-domain ultrasound signals of each
pixel of 3D ultrasound images to obtain the ultrasound frequency spectrum (computed via
“fft”, MATLAB function). The phase-spectrum (phs, Eq. 10) served as the basis for the
calculation of the energy-related ultrasound parameters in the frequency domain. Zero-order
moment (Mo, MHz, Eq. 11) corresponded with the integral of the area under curve of the phs,
which quantified its energy (Garcia-Pérez et al., 2019).
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The first-order moment (M, MHz) was calculated using Eq. 12. Plus, by dividing My by the
M, the center frequency of the phs (F:) was then computed with Eq. 13. Additionally, the
maximum peak of the frequency spectrum (MP, Eq 14) was also considered. As in section
2.5.1, the spectral-variance (VARsp, Eq. 15), spectral-skewness (SKEsp,, Eq. 16), spectral-
kurtosis (KURs,, Eq. 17) and spectral-entropy (ENTs,, Eq. 18) were also determined
(Caesarendra and Tjahjowidodo, 2017).

phs = |FFT| (10)
— VvN=fgpr
My = X, phs(f) Af (11)
My =I5, 7T phs(f) rAf (12)
M
Fr = (13)
MP = max(phs) (14)
_ XX (phs;—phs)?
VAR, = T (15)
_ [=N(phs;—phs)3]/(N-1)
SKE, = ==L e (16)
_ [=N (phs;—phs)*]/(N-1)
KUR,,, = ==t _— (17)
ENT,p, = — XL, p(phsy)log,p(phs;) (18)

Where f'is the vector of spectral frequencies (MHz), frrr is the maximal frequency obtained
by using the FFT, r represents the order of the moment, phs is the mean of each phs belonging
to each pixel of ultrasound images, osp the standard deviation of each phs belonging to each
pixel of ultrasound images and p(phs;) is the probability of the occurrence of the i-th value in
the discretized phs.

2.6 Statistical analysis

In order to assess the influence of bone fragments size/type and their location within chicken
breast samples on the time and the frequency domain ultrasound parameters, a multifactor
analysis of variance (ANOVA) was considered. Multifactor ANOVA models were adjusted
independently for each computed-parameter. The mean comparisons were performed by
using Fisher’s Least Significant Difference (LSD) test with a 95% confidence interval.
Further, an ANOVA test based on the L values was also performed to examine whether the
inserted bone fragments affected the thickness of measured samples.
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2.7 Mathematical modeling

In order to assess the feasibility of using the ultrasound images computed in the time-domain
and frequency-domain to detect the BFs within chicken breast samples, three different
approaches, namely time-domain approach (TDA), frequency-domain approach (FDA) and
the integration of TDA and FDA: time-frequency domain approach (TFDA) were proposed
(Fig. 4). TDA approach used all the parameters computed in the time-domain (PP, ENG, INT,
Ve, VAR, SKE;, KUR; and ENT;; Fig. 4C), while FDA used the ones in the frequency-domain
(Mo, Fi, MP, VAR, SKEs,, KURsp and ENTsp; Fig. 4C). Finally, the TFDA integrates all
features extracted of both time and frequency domain in the same dataset (PP, ENG, INT, V.,
VAR, SKE;, KUR; and ENTy, Mo, F;, MP, VAR, SKEsp, KURs, and ENTsp).

To improve the speed of analysis and to facilitate the modelling procedures, each image was
unfolded as a feature vector (Achata et al., 2018). For this, each image was reshaped as a
vector of ixXjxk (Fig. 4.F-G). As an example, one image in TDA (i=5 xj =5 x k= 8) was
rearranged from a 3D-matrix to a 1D-row vector of dimension 200 (Fig. 4F). Thus, each
combination of approaches has matrices of unfolded images with different dimensions: TDA
([162-all data both control and OC] x 1xjxk =200), FDA ([162-all data both control and OC]
x ixjxk = 175) and TFDA ([162-all data both control and OC] x ixjxk = 375).

As stated in the “Introduction section”, addressing the challenge of detecting BF in the
poultry meat industry is of critical importance. To this end, various data-driven modeling
strategies should be explored to identify the most effective solution. In this study, two main
strategies were proposed. The first involved an unsupervised method, applying a PCA model
within the framework of MIA-based Multivariate Statistical Process Control (MSPC). The
second approach aimed to assess whether detection performance could be improved through
Latent Variable-based Machine Learning (LV-ML) techniques. The statistical modeling
procedures for both the unsupervised and supervised strategies are illustrated in Fig. 5 and
described in detail in sections 2.7.1 and 2.7.2.
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Fig. 5. Statistical modeling procedure used for both unsupervised and supervised strategies
in the detection of bone fragments in poultry meat. Analysis of different approaches time-
domain, frequency-domain and time-frequency-domain (A), unsupervised modeling using
principal component analysis (PCA) and statistical optimization via Multivariate Statistical
Process Control (MSPC) based Residual Sum Squares (RSS) and Hotelling’s T-square (T?)
statistics (B) and supervised modeling and optimization based on Latent Variable-Machine
Learning (LV-ML).

2.7.1 Unsupervised modeling

2.7.1.1 MIA based PCA-MSPC

The MIA procedure was followed according to reported by Colucci et al. (2019) and Verdu
et al., (2025). The PCA model was employed to extract the latent eigenspace of unfolded
control images (without BF). For this purpose, control data sets (81 control images) were
randomly split into a segment of 90% of experimental data for model calibration (Cecay; 73
samples). The remaining samples, not included in model training, comprised 10 % of the
control data (Cgy; 8 samples) and all OC images (81 samples), which were reserved for
external validation. This validation aimed to assess the feasibility of the calibrated PCA
model in detecting BF (Reis, 2015).

Firstly, the segment of data for PCA calibration (Eq. 19) was mean-centered and scaled to
have unit variance. The PCA model used the Singular Value Decomposition (SVD) algorithm
to extract the orthogonal latent eigenspace by compressing the image information into a LVs
(Kruse et al., 2014). During the scaling process, both the mean and standard deviation vectors
obtained from scaling process were saved as PCA control coordinates. Furthermore, the
external validation dataset (Cev + OC images) was scaled (Cgvsc + OCsc) using the control
coordinates and then projected onto the latent space by using the loadings (PTca;; Eq. 19-21)
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from the control model. The residual sum of squares (RSS; Eq. 22-24) and the Hotelling’s T-
squared (T%; Eq. 25-27) multivariate control statistics were computed.

To assess the detection capability of MIA-MSPC, a design of experiment (DoE) was
formulated. This DoE consisted in analyze the influence of computing the control limit (CL)
of both RSSca (Eq. 22) and T?ca (Eq. 25) from control images, using four different levels
(90%, 95%, 97.5% and 99%) by percentile method (Vitale et al., 2016). Additionally, a limit
augmentation (LA) of 0%, 50%, 75% and 100% was used to increase the decision boundary
of computed CLs (Sinisterra-Solis et al., 2024).

Ccal = tcalP(:Ell (19)
tey = CgyscPeal (20)
toc = OCscPcal (21)
RSScal = é\:l(ccal - tcalpcgl)ezl (22)
RSSgy = YAz 1(Cysc — tevPea)3 (23)
RSSoc = XA=1(0Csc — tocP)3 (24)
tﬁa a
Ta = Xam15. 5 (25)
tZ
TZEV = §=1%:12 (26)
t2
T?0c = Ya-1 0(::2 (27)

where Cea is the predicted control images based on the calibrated PCA model, teal, tey and toc
are the scores of projected Ccal, Cev and OC images in the PCA space and 61 is the variance
of each a computed LV. Statistical modeling and computing procedure was performed using
MATLAB programming language.

2.7.1.2 Analysis of sample size in the detection of BF using MIA-MSPC

In order to elucidate the influence of the number of USI (both control and OC) used in the
detection of BF within poultry samples, four different datasets varying in their number of
images were used in the mathematical modeling. The total of experimental dataset (81 control
images and 81 OC images, i.e. 162 images) was split into further three different ratios with
75% (61 control images and 60 OC images, equal to 121 images), 50% (41 control images
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and 40 OC images, equal to 81 images) and 25% (21 control images and 21 OC images, equal
to 42 images). Thus, TDA using the total of experimental data set (100%) consisted in 81
control images and 81 OC images, both with dimensions of i =5 (number of points on the X
axis)x j = 5 (number of points on the Y axis) x k = 8 (number of parameters computed in the
time-domain). FDA was composed of 81 control images and 81 OC images, both with
dimensions of i =5 x j =15 x k =7 and TFDA integrating both TDA and FDA, as result 81
control images and 81 OC images, both with dimensions ofi=35 x j=15 x k= 15. Furthermore,
the other datasets (75%, 50% and 25%) were also considered for TDA, FDA and TFDA.
These datasets were also unfolded as a vector of ixjxk. As a result each combination of
approaches has matrices with different dimensions: TDA ([162 unfolded images; UNI-100%,
121 UNI-75%, 81 UNI-50% , 42 UNI-25%] x ixjxk =200), FDA ([162 UNI-100%, 121 UNI-
75%, 81 UNI-50% , 42 UNI-25%] x ixjxk = 175) and TFDA ([162 UNI-100%, 121 UNI-
75%, 81 UNI-50% , 42 UNI-25%] x ixjxk = 375).

2.7.1.3 Analysis of first order statistics on ultrasound energy-magnitude-distribution
parameters

Alternatively to all strategies described, a new approach was proposed. Feature extraction
approach using first order statistics applied on ultrasound energy-magnitude-distribution
parameters. This approach consisted in compute from each channel of the images (Fig. 4D-
4E), the mean, standard deviation, range, skewness and kurtosis. Then, new approaches
named feature-extraction time-domain approach (feTDA), feature-extraction frequency-
domain approach (feFDA) and feature-extraction time-frequency domain approach
(feTFDA) were also evaluated. As an example, in TDA, which used the PP, ENG, INT, V.,
VAR, SKE;, KUR; and ENT; (81 control images and 81 OC images, both with dimensions
of i=5 xj =5 xk=28), for each channel, five first order statistics such as mean, standard
deviation, range, skewness and kurtosis were calculated, as result feTDA considering all data
has dimensions of 162 images x [5 first order statistics x 8 channels =40]. The same
procedure was applied for FDA (162 x 35) and TFDA (162 x 75). This approach was
proposed to reduce the dimensionality of the original high-dimensional data space. The
rationale behind this method lies in the assumption that the presence of BF alters the statistical
distribution of the ultrasound energy-magnitude-distribution parameters. Specifically,
changes in first-order statistical descriptors (mean, standard deviation, range, skewness, and
kurtosis) extracted from each channel are hypothesized to reflect these distributional shifts.

2.7.1.4 Classification performance and statistical validation of unsupervised
modeling strategy

The capability of PCA in the detection of BFs was assessed varying from 1 LV to the maximal
number of LVs for each approach (section 2.7.1.1, section 2.7.1.2 and section 2.7.1.3) and
sample ratio. Both RSS and T? multivariate statistical control charts where employed to
quantify the classification performance of the models, joint to the use of two corresponding
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confusion matrices (CFM, Eq. 28; computed using “confusionmat” MATLAB function). In
this way, control images from calibration and internal validation dataset with values of RSS
and T? below the LA-control limits indicate true negatives (TN), whereas if they exceed the
LA-control limits, they indicate false positives (FP). Regarding the OC images, true positive
(TP) means OC images exceeding the LA-control limit, hence being correctly detected as
samples with FBs, whereas OC images not exceeding the LA-control limit are considered as
false negative (FN). The goodness of classification of each multivariate statistic was assessed
by computing figures of merit such as the overall accuracy (Acc, Eq. 29), sensibility (Se, Eq.
30) and specificity (Sp, Eq. 31) (Craig et al., 2018).

Real
. OC Control
CFM = Predicted oc TP Fp (28)

Control FN TN

TP+TN

Acc(%) = o rrnarper * 100 (29)
TP

Se = TP+FN (30)
TN

Sp = TN+FP (1)

In order to optimize the PCA model based on RSS and T2, a multi-objective optimization
problem was formulated. The objective function was finding the number of LVs (optimal
number of principal components, OPCs) of the PCA model which simultaneously maximize
both the Sec and Sp. Thus, the response surface methodology (RSM) and desirability function
(De) was performed (Kumar et al., 2019; Yolmeh and Jafari, 2017). In this context, the same
desirability value was assigned to both Se and Sp, assuming equal importance for correctly
identifying positive and negative cases. This balanced approach ensures that the optimization
process does not favor one metric over the other, leading to a more robust and generalizable
model (Costa and Lourenco, 2023).

Optimization processes were carried out using the “fmincon” MATLAB function. All
calculations were repeated 100 times to estimate the influence of considering different
randomly partitions of the control matrices to calibrate the PCA model and further its
influence on the detection of BFs. For the selection of the number of LVs of the optimized
PCA model in each approach maximizing the classification performance, a multifactor
ANOV A model considering the random data partition (as a blocking factor), the control limits
and their LA and the goodness of classification metrics as responses (Acc, Se, and Sp) was
carried out. All multifactor ANOV A models (sections 2.6 and 2.8) were subjected to residual
validation (Marques et al., 2020). This process involved conducting different tests on the
residuals to assess normality (Shapiro-Wilk’s test and normal probability plot), independence
(Ljung-Box’s test), and homoscedasticity (multiple linear regression-MLR on square
residuals). Hypothesis tests and fulfillment of statistical assumptions were assessed at a
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confidence level of 95%. The statistical analysis was conducted using STATGRAPHICS
Centurion XVIII (Manugistics, Inc., Rockville, MD, USA).

2.7.2 Supervised machine learning latent-based classification models

As already mentioned in Section 2.7, the second approach aimed to explore whether applying
machine learning (ML) to the MIA-PCA framework could improve the detection of BF in
poultry meat. To this end, an expanded and more in-depth modeling procedure was employed,
including analysis, multi-objective optimization, and variable selection strategies. Based on
the previously extracted latent eigenspace from the PCA model, the images projected onto
the control model for calibration (tca), control images for external validation (tev), and OC
images (toc) were combined into a single matrix for each approach (TDA, FDA and TFDA).
These matrices served as the basis for calibrating various ML techniques using the extracted
LVs. The LV-ML techniques included: SVM, RT, RF, NB, LDA, QDA, and GLM. These
techniques were applied in binary classification mode to mathematically distinguish between
control (tcattev) and OC (toc) USIs, based on the extracted latent eigenspace (see section
2.7.1). For this purpose, the scores (both from control and OC images) were used as input
(regressors) of these ML classifiers.

An additional approach emerge since TFDA is the combination of two different approaches
with different number channels (Fig. 4D) and these channels belong to two different domains,
the temporal domain and frequency domain. In the previous section 2.7.1, TDA and FDA
were integrated into same matrix without any preprocessing tool, wherein the naturally
related these descriptors and the number of in each group were not considered. In order to
elucidate whether this combination led to an any improvement in the detection of BF, two
types of block scaling; “Hard” and “Soft” were applied to TFDA (Eriksson et al., 2016).
Thus, TFDA block-scale hard (TFDABH, Eq. 32) and TFDA block-scale soft (TFDABS, Eq.
33) were also considered as additional approaches.

Xrpa—XtDA  XFDA-XFDA

TFDABH = [ STDA SFDA (32)

vnVTDA vnVFDA

Xrpa-XtDA  XFDA-XFDA
TFDABS = 9TDA OFDA (33)
4/nVTDA 4/nVFDA

Where Xtpa and Xrpa are the matrices formed by the UNI in TDA and FDA respectively,
XTDA, otpa, and nVTDA, and XFDA, orpa, and nVFDA are the mean, standard deviation and
number of variables in Xtpa and Xrpa, respectively.

As the detection of BF was primarily an experimental data-driven task, exploring various

configuration of each ML technique became imperative in order to properly address the
experimental variability of hyperparameters in the detection of BF (Collazos-Escobar et al.,
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2023b). Thus, in order to optimize the hyperparameters of each LV-ML technique, different
multilevel factorial DoEs were formulated.

In the case of SVM, a DoE (5'6!2!3'71") using all approaches (TDA, FDA, TFDA, TFDABH
and TFDABS), 6 kernel functions (KF; rbfdot, polydot, laplacedot, vanilladot, besseldot, and
anovadot), two types (C-svc and nu-svc), regularization parameter (C; 100, 500.5, and 1000)
and NLVs (1, 2, 3, 4,...71) was formulated (Table 1). Computational procedure using all ML
techniques was carried out using the statistical software R (R Core Team, 2025). Further,
model fitting via SVM was performed using the R-package developed by Karatzoglou et al.
(2024).

Table 1. Summary of the Support Vector Machine (SVM) configuration used for supervised
modeling of bone fragment detection in poultry meat. The table reports the R function,
associated R packages, selected hyperparameters, tuning ranges, and the design of
experiments (DoE) applied in the analysis.

R-function R-package Approach HyP Tuning range DoE
1) rbfdot
ii) polydot
iii) laplacedot
KF iv) vanilladot

v) besseldot
vi) anovadot

i) TDA i) C-sve
ii) FDA Type i) nu-sve .
ksvm kernlab iii) TFDA i (5'6'2'3'71Y):
iv) TFDABH i) 100 12780 models
v) TFDABS C i) 500.5
iii) 1000
i1
i) 2
NLVs iii) 3
Ixxi) 71

TDA (time-domain approach) frequency-domain approach), FDA (frequency-domain approach), TFDA (time-
frequency-domain approach), TFDABH (time-frequency-domain approach-block-scale hard), TFDABS (time-
frequency-domain approach-block-scale soft), HyP (hyperparameter), KF (kernel function), C (regularization
parameters) and NLVs (number of latent variables).

For RF a DoE (5'6'71") was set up considering all approaches (TDA, FDA, TFDA, TFDABH
and TFDABS), different number of trees (NTs ;1= DTe, 50, 500, 1000, 5000 and 10000) and
number of latent variables (NLVs; 1, 2, 3,4,...71; Table 2) (Liaw and Wiener, 2002), whereas
NB (Table 3) considered a DoE (5'2!71') which employed all approaches (TDA, FDA,
TFDA, TFDABH and TFDABS), application of Laplace Smoothing (LS; 0-No application
and l-application) and NLVs (1, 2, 3, 4,...71; Table 3) (Meyer et al., 2024).
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Table 2. Summary of the Random Forest (RF) configuration used for supervised modeling
of bone fragment detection in poultry meat. The table reports the R function, associated R
packages, selected hyperparameters, tuning ranges, and the design of experiments (DoE)
applied in the analysis.

R-function R-package Approach HyP Tuning range DoE
i) 1 =DTe
ii) 50
iii) 500
. NTs iv) 1000
i) TDA v) 5000
) FDA vi) 10000 (516171):
randomForest randomForest  iii) TFDA 2130 models
iv) TFDABH i1
v) TFDABS i) 2
NLVs 13
Ixxi) 71

TDA (time-domain approach) frequency-domain approach), FDA (frequency-domain approach), TFDA (time-
frequency-domain approach), TFDABH (time-frequency-domain approach-block-scale hard), TFDABS (time-
frequency-domain approach-block-scale soft), HyP (hyperparameter), NTs (number of trees), DTe (Decision
tree) and NLVs (number of latent variables).

Table 3. Summary of the Naive Bayes (NB) configuration used for supervised modeling of
bone fragment detection in poultry meat. The table reports the R function, associated R
packages, selected hyperparameters, tuning ranges, and the design of experiments (DoE)
applied in the analysis.

R-function R-package Approach HyP Tuning range DoE
)0
. LS i) 1
i) TDA
ii) FDA i) 1 s191711y;
naiveBayes €l071 iii) TFDA i) 2 ( ):
. 710 models
iv) TFDABH NLVs iii) 3
v) TFDABS ...
Ixxi) 71

TDA (time-domain approach) frequency-domain approach), FDA (frequency-domain approach), TFDA (time-
frequency-domain approach), TFDABH (time-frequency-domain approach-block-scale hard), TFDABS (time-
frequency-domain approach-block-scale soft), HyP (hyperparameter), LS (Laplace Smoothing) and NLVs
(number of latent variables).

Regarding LDA (DoE=5'71"), QDA (DoE=5'55") and GLM (DoE= 5'71"), all of these DoEs
considered all approaches (TDA, FDA, TFDA, TFDABH and TFDABS) and for LDA and
GLM aNLVs (1, 2, 3, 4,...71; Table 4). In the case of QDA, a reduced NLVs (from 1 to 55)
was employed because the independent estimation and inversion of the covariance matrix for
each class (control and OC) became ill-conditioned when using a higher number of latent
variables. This is due to the fact that, in QDA, each class requires the computation of its own
covariance matrix, which must be invertible. When the number of variables approaches or
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exceeds the number of observations in a class, the covariance matrix becomes singular or
nearly singular, preventing model computation (Siqueira et al., 2017). Thus, in order to avoid
this issue, a lower number of NLVs (up to 55) was selected. Although up to 60 NLVs could
theoretically be used given that the class size was 60 (60 control and 60 OC in training 75%
dataset) a more conservative cutoff was applied to ensure numerical stability and avoid
potential problems related to near-singular covariance matrices during QDA computation.
Computing modeling of LDA, QDA and GLM was performed using different R-function-
packages (Table 4). LDA and QDA were fitted using the method developed by Venables &
Ripley. (2002) while GLM was calculated using the stats package R Core Team (2025).

Table 4. Summary of the Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA) and Generalized Linear Model (GLM) configuration used for supervised
modeling of bone fragment detection in poultry meat. The table reports the R function,
associated R packages, selected hyperparameters, tuning ranges, and the design of
experiments (DoE) applied in the analysis.

R-function R-package Approach HyP Tuning range DoE
i) TDA D1
LDA: /d MASS i) FDA i 51711
: lda iii) TEDA NLvs D)3 Gy
: 355 models
iv) TFDABH
v) TEDABS i) 71
i) TDA i1
ii) FDA 2 s
QDA: gda MASS iii) TFDA NLvs )3 27(55 Ifligas
iv)TFDABH =
v) TEDABS Iv) 55
i) TDA D1
. iii :
GLM: glm stats iif) TFDA NLVs 355 models
iv) TFDABH
v) TFDABS i) 71

TDA (time-domain approach) frequency-domain approach), FDA (frequency-domain approach), TFDA (time-
frequency-domain approach), TFDABH (time-frequency-domain approach-block-scale hard), TFDABS (time-
frequency-domain approach-block-scale soft), HyP (hyperparameter) and NLVs (number of latent variables).

2.7.2.1 Variable selection based RF model

In order to explore strategies for selecting latent variables (L'Vs) that maximize the predictive
performance of the LV-machine learning (LV-ML) models in the detection of BF in chicken
breast samples, the feasibility of using the Mean Decrease Accuracy (MDA) criterion for
variable selection (VS) within a Random Forest (RF) model was evaluated (Collazos-Escobar
et al., 2024). Consequently, the Random Forest-Variable Selection-Latent Variable-Machine
Learning (RF-VS-LV-ML) approach was also considered (Fig. 6). To achieve this, during
the model tuning process of SVM, RF, NB, LDA, QDA and GLM techniques across all
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dataset (TDA, FDA, TFDA, TFDABH and TFDABS), a PCA model was first used to extract
the latent eigenspace (considering in this case the maximal number of LVs = 71; Tables 1 to
4). Subsequently, a RF model using 10000 NTs was calibrated on the extracted latent space.
When this RF model was trained on the training dataset (see Section 2.7.2.2), it achieved an
Acc of 100% in classifying control and OC samples, which is indicative of an overfitting
phenomenon in ML models (see “Results and discussion” section). While overfitting is a
known limitation in ML models (de Andrade et al., 2020), it can be strategically leveraged
during the VS process to identify features that strongly contribute to model performance.
Nevertheless, the effectiveness of the selected variables must be rigorously tested using an
external validation dataset to ensure generalizability (Collazos-Escobar et al., 2023a). Thus,
using this calibrated RF, the MDA criterion was used to rank the most important first 30 LVs
to better differentiation of images with and without BFs. Subsequently, these ranked LVs
were used in the computer modeling of RF-VS-LV-SVM, RF-VS-LV-RF, RF-VS-LV-NB,
RF-VS-LV-LDA, RF-VS-LV-QDA and RF-VS-LV-GLM (Table 5).

1. Time-d i h (TDA
*) i i G (B) Machine learning (ML) latent-based modeling

2.F = i h (FDA) — . .
requency-domain approach ( ) Variable selection based Random Forest Mean Decrease

Optimized Random Forest Accuracy criteria

3. Time-frequency-domain approach (TFDA)

4. Time-frequency-domain approach-block - - - o B R e e s
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o 1 lIllIlI L | —
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$
(C) Supervised modeling
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Fig. 6. Statistical modeling procedure used to evaluate the feasibility of variable selection
(VS) based on mean decrease in accuracy from a Random Forest (RF) model for tuning and
optimizing supervised machine learning (ML) techniques. The analysis includes: time-
frequency-domain approaches (A), RF-based variable selection (RF-VS; B) and supervised
modeling and optimization based on selected latent variables using machine learning (RF-
VS-LV-ML; C).
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Table 5. Random Forest-Variable Selection-Latent Variable-Machine Learning (RF-VS-LV-
ML) approach. Design of Experiments (DoE) for RF-VS-LV-Support Vector Machine (RF-
VS-LV-SVM), RF-VS-LV-Random Forest (RF-VS-LV-RF), RF-VS-LV-Naive Bayes (RF-
VS-LV-NB), RF-VS-LV-Linear Discriminant Analysis (RF-VS-LV-LDA), RF-VS-LV-
Quadratic Discriminant Analysis (RF-VS-LV-QDA) and RF-VS-LV-Generalized Linear
Model (RF-VS-LV -GLM).

Technique Approach HyP Tuning range DoE
i) rbfdot
ii) polydot
iii) laplacedot
KF iv) vanilladot
i) TDA v) besseldot
ii) FDA vi) anovadot
(51612131):
RF-VS-LV-SVM iii) TFDA .
. i) C-sve 180 models
iv) TFDABH 7
v) TFDABS Type il) nu-svc
i) 1
C ii) 500.5
iii) 1000
i) 1 =DTe
1) TDA i) 50
il) FDA iii) 500 (5'6'):
RF-VS-LV-RF ¥11) TFDA NTs iv) 1000 30 models
iv) TFDABH v) 5000
v) TFDABS vi) 10000
i) TDA
ii) FDA i) 0 (5121):
RF-VS-LV-NB iii) TFDA LS )
' . 10 models
iv) TFDABH ii) 1
v) TFDABS
i) TDA
RF-VS-LV-LDA i) FDA 5h:
I iii) TFDA — (5:
. 5 models
iv) TFDABH
v) TFDABS
i) TDA
ii) FDA .
RF-VS-LV-QDA iii) TFDA _ 5 IE]'SO()j.e .
iv) TFDABH
v) TFDABS
i) TDA
il) FDA 51y,
RF-VS-LV-GLM iii) TFDA T (5):
. 5 models
iv) TFDABH
v) TFDABS

TDA (time-domain approach) frequency-domain approach), FDA (frequency-domain approach), TFDA (time-
frequency-domain approach), TFDABH (time-frequency-domain approach-block-scale hard), TFDABS (time-
frequency-domain approach-block-scale soft), HyP (hyperparameter), KF (kernel function), C (regularization
parameters), NTs (number of trees), DTe (Decision tree) and LS (Laplace Smoothing).
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2.7.2.2 Classification performance and statistical validation of supervised modeling
strategy

The classification performance of all LV-ML (section 2.7.2) and RF-VS-LV-ML (section
2.7.2.1) was also assessed via the CFM (Eq. 28) and all of the figures of merit derived from
the CFM (Acc, Se and Se; section 2.7.1.4). Additionally, to gain a deeper understanding of
model behavior and robustness, complementary classification performance metrics were
computed, including precision (Pr; Eq. 34), recall (R¢; Eq. 35), F-score (Fs; Eq. 36) (Galdon-
Navarro et al., 2018), the area under the Receiver Operating Characteristic curve (AUCroc)
(Debon and Garcia-Diaz, 2012), and the Matthews correlation coefficient (MCC) (El Zein et
al., 2025). These metrics provide a more comprehensive assessment of the models’
classification capabilities, which is particularly relevant in the context of BF detection within
chicken breast samples.

P = TPT+PFP (34)

e = TPT+PFN (35)

F, =2 x % (36)

AUCRo¢ = trapz(ROC) (37)

MCC = (TPXTN)—(FPXFN) (38)

J(TP+FP) (TP+FN) (TN+FP)(TN+FN)

Where “trapz” is the area-under-curve of ROC curve. AUCroc was computed using the
performance-“auc” R-function from the performance R-package Liidecke et al. (2021). In
addition, the confusionMatrix R-function from the Caret R-package (Kuhn, 2008) was used
to compute the CFM in this section.

In the case of both LV-ML and RF-VS-LV-ML, a modeling strategy based on using a
segment of 75% of the experimental dataset for models’ training and the remaining 25% to
calculate their predictive power was used (Debon and Garcia-Diaz, 2012). In this sense, all
approaches (TDA, FDA, TFDA, TFDABH and TFDABS), the experimental images (section
2.72) were randomly split 100 times (repeated hold-out strategy) by (Ruiz de Miras et al.,
2024) in two data sets, for training dataset the 121 images (60 = 1 of control and 60 £+ 1 of
OC) and 41 images (20 + 1 of control and 20 + 1 of OC) for validation purposes. Additionally,
during the computational procedure all models were trained and validated using identical
datasets. This ensured that all models underwent training and validation with the same data
split in each partition, eliminating any bias linked to the use of different training and
validation data (Collazos-Escobar et al., 2023b). The goodness of fit of LV-ML and RF-VS-
LV-ML was calculated for both training and validation datasets. Additionally, the DoEs
purposed in Tables 1 to 4 were replicate 100 times using in each iteration the same partition

29



for training and the remaining for validation across all LV-ML and RF-VS-LV-ML, As a
result, for LV-SVM a total of 1°278.000 runs (12780 models from DoE; Table 1 x 100 times),
LV-RF a total of 213,000 runs (2130 models from DoE; Table 2 x 100 times), LV-NB a total
of 71,000 runs (710 models from DoE; Table 3 x 100 times), LV-LDA a total of 35,500 runs
(355 models from DoE; Table 4 x 100 times), LV-QDA a total of 27,500 runs (275 models
from DoE; Table 4 x 100 times) and LV-GLM a total of 35,500 runs (355 models from DoE;
Table 4 x 100 times). Meanwhile, in the RF-VS-LV-ML the number of runs were: 18000
runs for RF-VS-LV-SVM (180 models from DoE; Table 5 x 100 times), 3000 runs for RF-
VS-LV-RF (30 models from DoE; Table 5 x 100 times), 1000 runs for RF-VS-LV-NB (10
models from DoE; Table 5 x 100 times) and 500 runs for each of RF-VS-LV-LDA, RF-VS-
LV-QDA and RF-VS-LV-GLM (5 models from DoE; Table 5 x 100 times). Additionally,
computation times (CT, s) were recorded using the system time R-function, both to measure
the duration required to train the ML techniques and to evaluate their computational cost. All
computations were performed on an Intel Core 17 processor running at 2.2 GHz with 16 GB
of RAM.

2.7.2.3 Multi-objective hyperparameters optimization of LV-ML and RF-VS-LV-
ML models

In order to optimize the hyperparameters of each ML techniques in both LV-ML and RF-VS-
LV-ML, a multi-objective strategy based on PLS modeling was applied. Partial Least Square
Regression (PLSR) technique was used to simultaneously assess the influence of
hyperparameters combination based-DoEs (Tables 1 to 5) of each technique on all figures of
merit in a multivariate way. The application of PLSR on this task depicts an important
advance in ML model’s optimization compared to the conventional univariate way
(optimization strategy based-MLR/ANOVA on one goodness of fit metric such as mean-
square error; MSE or coefficient of determination; R?), since PLSR allowed to model the
latent relationship between both regressors and responses simultaneously and to find a latent
eigenspace wherein to maximize the covariance of projected input and response variables
(Duma et al., 2024). Thus, the calibrated/validated PLSR model can be further used within
an optimization framework (Paris et al., 2024).

The first step in this approach consisted in organizing the statistical results obtained from
each ML into a datasets structured to be further used in the modeling procedure via PLSR. In
this sense, in the LV-SVM, the data approaches (TDA, FDA, TFDA, TFDABH and
TFDABS), type (C-svc and nu-svc), KF (rbfdot, polydot, laplacedot, vanilladot, besseldot,
and anovadot), C (1, 500.5, and 1000) factors from DoE (Table 1) were transformed into
dummy variables (0-ausence and 1-presence of each condition) to facilitate the mathematical
PLSR modeling since these factors are naturally categorical. Additionally, replication of runs
(100 random partition of the experimental datasets) was also considered as categorical input.
Regarding the NLVs (1 to 71; Table 1) was considered as continuous numerical variable. All
of these variables were considered as regressors the model regressors in the X matrix space.
The Y response variable space was formed by the Acc, Se, Sp, Pr, Re, Fs, AUCroc and MCC
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for both training (Acct, Set, Spt, PrT, Ret, FsT, AUCROCT and MCCr) and validation (Accv, Sev,
Spv, Prv, Rev, Fsv, AUCrocv and MCCy). The idea behind organize the response matrix
composed of classification performance metrics for training and validation datasets was to
elucidate the effect of regressors on both dataset and in the further optimization process, use
the model to find the best LV-SVM model (from those 12780 models) to simultaneously
maximize the classification performance of control and OC images from training and
validation datasets.

For all LV-RF, LV-NB, LV-LDA, LV-QDA and LV-GLM, the dataset approaches (TDA,
FDA, TFDA, TFDABH and TFDABS) and replication of runs (100 random partition of the
experimental datasets) were set as dummy variables and NLVs (1 to 71; Table 1) was
considered as numerical variable. In the case of LV-RF and LV-NB, the NTs and LS (Table
2 and Table 3) were also converted into dummy variables. Therefore, the DTe, NTs=50,
NTs=500, NTs=1000, NTs=5000 and NTs=10000 and LS= 0 and LS=1 were considered in
RF and NB as model regressors, respectively. In the case of RF-VS-LV-ML, the data
approaches (TDA, FDA, TFDA, TFDABH and TFDABS), hyperparameters belong to each
ML technique and the replication runs were set as dummy variables. The main difference
between LV-ML and RF-VS-LV-ML is that, in the RF-VS-LV-ML approach, the tunned RF-
NTs=10000 (as detailed in section 2.7.2.1) determined the most important LVs to maximize
the classification performance of control and OC images for the training dataset. For that
reason, the NLVs is not a factor to be considered in the PLSR modeling and it is not a factor
to be further optimized. Once the datasets were organized, a PCA model was performed prior
to the PLSR model calibration to verify that all response variables were correlated and to
ensure the successful calibration of the PLSR model. Otherwise, if the response variables
were not correlated, it would be necessary to calibrate a separate PLSR model for each group
of correlated variables. Subsequently, the datasets were independently modeled using a PLSR
approach. To achieve this, the X (regressors, Eq. 39) and Y (response variables, Eq. 40)
matrices were mathematically decomposed by finding the maximum covariance and linear
relationships between the scores T and U (Eq. 39 to 40) (Brendel et al., 2020). The objective
function in a PLSR model considered maximizing the covariance between X and Y spaces
via computation of latent variables based on both data spaces. The decision variables obtained
were the W and C regression coefficients (weights) and their regressors (scores T and U)
(Barrera Jiménez et al., 2023).

Xpred = TWT +E (39)
Ypreda = UCT +F (40)
Where Xpred and Yprea are the predicted X and Y matrices, T and U are the score matrices, W
and C are the weight matrices, E and F are the residual matrices of X and Y data matrices,
respectively. The selection of the optimal number of PLSR components (ONPLSR) was

carried out by using a K-fold-Cross-Validation (K=5) in order to avoid the overtraining of
the PLSR model and the Variable Importance for the Projection (VIPs) metric were used to
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quantify the global importance of the TDA, FDA, TFDA, TFDABH and TFDABS,
hyperparameters of each ML technique, NLVs and random partition (RS) of experimental
data set (Craig et al., 2018). X-variables with VIP values below 0.5 were excluded from the
model, subsequently a screened PLSR model was obtained (Kahriman and Liland, 2021).
Additionally, both the RSS and T2 were used to detect and remove outlier observations from
the experimental data set (Sanchez-Jiménez et al., 2023). The goodness of fit of PLSR models
was assessed using the coefficient of determination for training (R?; Eq. 41) and K-Fold cross
validation (Q?; Eq. 42) datasets and the root mean square error in both training (RMSETg;
Eq. 43) and for K-Fold cross validation set (RMSEcv; Eq. 44).

2
Zin=1(Y_Ypred)

R2(%) = 100 — —
( 0) Zjn=1(Y_Ypred)2

(41)

2
Zjn=1(YCV_YCVpred)

S 2
Z?:;L(YCV - YCVpred)

n (v 2
RMSErg = /M (43)

n _ 2
RMSECV — jZl_l(ch Ychred) (44)

ncv

Q%(%) = 100 — (42)

Where Ycvand Ycvpred are the experimental and predicted data matrices for the K-fold cross
validation dataset used in the PLSR model calibration and n and ncy are the number of
observations in both training and K-fold cross validation datasets. All parameter estimation
in the PLSR modeling was conducted using the Non-Iterative Partial Least Square (NIPALS)
algorithm implemented in the opls R-function of the OPLS R-package (Thévenot et al.,
2015). Once the PLSR models were independently calibrated and validated in each LV-ML
and RF-VS-LV-ML approaches (Fig. 7), they were used as digital model in an optimization
problem.
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Fig. 7. Statistical modeling procedure based Partial Least Squares Regression (PLSR) used

in the multi-objective optimization of Latent Variable-Machine Learning (LV-ML) and
Random Forest-Variable Selection-Latent Variable-Machine Learning (RF-VS-LV-ML)
models.

The multi-objective optimization process using the PLSR models was carried out in two
consecutive steps. The first step consisted of independently determining the best
hyperparameter configuration for each ML technique (LV-ML and RF-VS-LV-ML). In this
phase, a total of 12 PLSR models (Fig. 7) were calibrated. These models were then used to
identify the best dataset approach (TDA, FDA, TFDA, TFDABH, and TFDABS),
hyperparameter configuration (KF, type, C, NTs, and LS), and NLVs for each technique in
order to maximize the classification performance for both control and OC images in the
training and validation datasets.

The second step involved calibrating a new PLSR model to compare all optimized LV-ML
and RF-VS-LV-ML models and to determine which one achieved the highest classification
performance for both control and OC images. In this step, the dataset summarized the
previously optimized models, encoded as dummy variables in the X-space, with all figures
of merit as responses (Y-space). Additionally, the CT was included as a new response
variable. The goal using this PLSR model was therefore to identify the best optimized model
that maximized classification performance in both the training and validation datasets while
minimizing CT during the training process. Further, to select the optimized model that
maximized classification performance while minimizing CT, two different ANOVA models
were performed on Acc and CT as complementary tools to the PLSR-based multi-objective
decision optimization.

In the multi-objective optimization process using the calibrated PLSR models, equal weights
were assigned to the sixteen response variables considered in the Y-space (Acct, Set, Spt, PiT,
Ret, Fst, AUCRroCT, MCCrT, Accv, Sev, Spv, Prv, Rev, Fsv, AUCrocv and MCCy), to guarantee
that all classification performance metrics contributed equally to the overall optimization
criterion. The search space of the better conditions (dataset approach, hyperparameter
configuration of ML techniques and NLVs) in the optimization process was bounded by
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predefined lower and upper limits of X-matrices, containing the dummy variables associated
with the dataset approaches (TDA, FDA, TFDA, TFDABH and TFDABS) and ML
hyperparameters (KF, type, C, NTs and LS) and a continuous variable related with NLVs
(ranged between 1 to 71 LVs). For each candidate X-vector input in its raw (unscaled form),
standardization was performed using the mean and standard deviation parameters extracted
from the PLSR model calibration. Then, the response Y-vector corresponding to this
standardized X-vector was computed using the coefficients (W/C) matrices obtained from
the calibrated PLSR models.

Since the PLSR models allowed to a multivariate prediction of all response variables (Acct,
Set, Spt, Pi1, Ret, FsT, AUCROCT, MCCr, Accv, Sev, Spv, Prv, Rev, Fsv, AUCrocv and MCCy)
per each X-vector candidate solution, the objective function (FO) used in the optimization
process required a scalarized objective function to compare alternatives. This was defined as
the weighted sum of the predicted responses (Eq. 45).

FO(X) = Z]n=11 Wj * Ypred X) (45)

Where w; is the relative importance assigned to the j-th Y-response. As we previously
mentioned, equal weights were used to ensure that each classification performance metric
contributed identically to the FO. This fact was carried out to avoid the potential bias caused
by the differences in scale among response variables and encoded the intended trade-off
structure, such that improvements in any metric would have a proportional impact on FO.
Nevertheless, the weights assigned to each response variable can be adjusted across different
multi-objective scenarios to reflect alternative assessment of the contribution of these
response variables to FO. Thus, a systematic sensitivity analysis constitutes a relevant matter
for further research.

When CT is included alongside performance metrics to be maximized, Eq. (45) is generalized
by introducing a direction coefficient (S;j; Eq. 46).

FOcr (X) = erI;le * Sj * Ypred(X) (46)

Where S; €{—1, 1}, with Sj=1 for responses to be maximized and Sj=—1 for responses to be
minimized.

The discrete structure in this multi-objective problem required strict combinatorial
constraints, within the dataset block (TDA, FDA, TFDA, TFDABH, TFDABS) exactly one
variable could be active (value equal to one after rounding), and similarly for specific
hyperparameter blocks such as KF, type, C, NTs, LS. Any violation of these one-hot
conditions (for instance activating multiple datasets or multiple KFs, C, NTs and/or LS
simultaneously) was considered infeasible solution. To enforce these restrictions within a
continuous multi-objective optimization framework, a large penalty term was added
whenever a one-hot constraint was violated.
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Additionally, in order to avoid this fact, a custom initialization function (auxiliary function)
generated feasible seed vectors that inherently satisfied all structural constraints by randomly
selecting one active position in (TDA, FDA, TFDA, TFDABH, TFDABS), randomly
selecting one active position in hyperparameters, and assigning a random integer to the NLV's
between 1 and 71 was programed. For instance, in the case of LV-SVM (used here as an
illustrative X-vector example), the auxiliar function allowed us to randomly generate a vector
which contains a selected data approach (TDA = 0, FDA =1, TFDA=0, TFDABH=0 and
TFDABS=0), KF (rbfdot=1, polydot=0, laplacedot=0, vanilladot=0, besseldot=0 and
anovadot=0), C parameter (C100=0, Cso0.5=1 and Ci1000=0) and NLVs=8. Thus, a condition of
LV-SVM using the FDA approach, using a rbfdot-KF, C parameter of 500.5 and 8 NVLs was
predicted.

Optimization process was performed using the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) optimization method, which efficiently handles bound-constrained
optimization problems with continuous and discrete variables. A total of 100 independent
optimization runs were conducted, each initialized from a distinct feasible seed (generated
using the auxiliar function). Upon completion, the solution with the highest score (defined as
the weighted sum of predicted responses with no penalties) was selected as the optimal
configuration, representing the best attainable balance across all classification performance
metrics under the imposed structural and operational constraints. All multi-objective
computational assessments were conducted using the optim R-function from the stats R-
package.
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3. Results and discussion
3.1 Influence of BF on the ultrasound signals in the time and frequency domains

The influence of BFs on contact ultrasound signals in the time-domain is illustrated in Figs.
8 and 9, while the results for the frequency-domain are depicted in Fig. 10. Figs. 8 and 9 show
the contact ultrasound signals obtained from the center point (point 13, Fig. 1G), along with
their corresponding OC ultrasound images (using PP image as example) wherein the different
BFs were inserted into chicken breast pieces. Meanwhile, Fig. 10 depicts the phs of control
and OC also obtained from the center point of control and OC ultrasound images,

respectively.

2 2

( A) ——Control (B) ——Control
g | —2.0x1.5cm E ——2.0x1.0cm
) )
o o
2o E
= =
£ £
< <
2 ;
18 22 26 30 18 22 26 30
time (us) time (us)
PP (V) PP (V) PP (V) 4
©) D) (E)

3
el o: ® |
> > >

1

0

X axis X axis X axis

Fig. 8. Ultrasound signals and example of PP (peak-to-peak) image for detection of bone
fragments within the center of chicken breast samples. Bone fragments of size 2.0 X 1.5 cm
(A, D) and size of 2.0 x 1.0 cm (B, E), control sample image (C).

A consistent trend was observed in all cases: the BF presence disturbed the time-domain
control ultrasound signals and the control frequency-domain spectra. In the case of temporal
domain, the BFs of 2.0 x 1.5 cm (Fig. 8A) and 2.0 x 1.0 cm (Fig. 8B) promoted an important
decrease in signal amplitude. Moreover, the presence of these BFs led to a pronounced
reduction in the maximum peak of the phs (for 2.0 x 1.5 cm, Fig. 10A, and 2.0 % 1.0 cm, Fig.
10B). Conversely, for the BFs of 1.5 X 0.3 cm (Fig. 9A and Fig. 10C), 1.0 x 0.3 cm (Fig. 9B
and Fig. 10D), and 0.5 %< 0.3 cm (Fig. 9C and Fig. 10E), the influence of the bone fragments
led to less pronounced drops in the maximum amplitude of temporal ultrasound signals and
the maximum peak of the phs, compared to the samples containing BFs of larger size.
Additionally, the control ultrasound images (Fig. 8C) and the pixels around point 13 of OC
images (control pixels) evidenced PP values between 2.8 to 4 V (color bar from orange to
yellow), meanwhile in the OC ultrasound images (Fig. 8 and Fig. 9): the higher the size of
BFs the lower the PP values (ranging from 0.5 V, clear-red to 2 V, dark-red).
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Ultrasound waves are partially reflected and transmitted when they are passing through
materials with different acoustical impedance (defined by density and velocity). As regards
the detection of FBs such as BFs, glass or metal fragments within foods, a strong energy
reflection and scattering effects between the food material and the FBs interfaces are expected
(Cho and Irudayaraj, 2003). Therefore, the physical properties, structure and nature of FBs
determine the energy attenuation of ultrasound wave and its velocity (Farifas et al., 2021a).
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Fig. 9. Ultrasound signals and example of PP (peak-to-peak) image for detection of bone
fragments within the center of chicken breast samples. Bone fragments of size 1.5 X 0.3 cm
(A, D), size of 1.0 x 0.3 cm (B, E) and size of 0.5 x 0.3 cm (C, F).

In this sense, the results observed from time-domain signals (Fig. 8 and 9) and the phs (Fig.
10) can be analyzed by considering the BF within chicken breast as a heterogeneous system,
wherein the disparities in their acoustical impedance resulted in increased reflection of the
ultrasound waves on sample’s surface as well as scattering of ultrasound energy when it
passes through the chicken breast, consequently amplifying the attenuation. Similarly, the
presence of a gas-filled bone structure within the BFs potentially contributes to the energy
attenuation (Farifas, et al., 2021). Furthermore, the size of the BF within chicken breast was
related to the attenuation of ultrasound waves, the larger sizes of BF reflected and/or absorbed
(scattering inside the bone) more energy of the wave compared to the smaller sizes (Correia
et al., 2008).
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Fig. 10. Example of the frequency spectrum of chicken breast samples with and without bone
fragments. Bone fragments of size 2.0 < 1.5 cm (A), size of 2.0 x 1.0 cm (B), size 1.5 x 0.3
cm (C), size of 1.0 x 0.3 cm (D) and size of 0.5 X 0.3 cm (E).

In order to quantify the abovementioned attenuation effects of BFs within chicken breast
samples, a multifactor ANOVA examining the influence of BF size and their location inside
the samples, on the energy-related ultrasound parameters computed in the time-frequency
domain and ultrasound velocity (section 2.5), was carried out (Tables 6 to 9). Further, the
results of the multifactor ANOVA assessed on the L are also shown in Table 6.
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Table 6. Ultrasound parameters computed in the time-domain (energy-magnitude related and
velocity) and thickness for each bone size and location within the sample. Multifactor

ANOVA homogeneous groups.

Position: center (point 13 of the matrix)

Type PP (V) ENG (V?) INT (V ps) Ve(ms™) L (m)

Control 3.8+0.1%4  4245+3.9" 20494354 15478+ 11.6 0.01+1x1074
20x1.5em  07+£0.1A  [1.5+£2.3% 31.0+£2.8  1433.8+13.0% 0.02+1x10%
2.0x1.0em  (0.8+0.1% 6.9 +2.8% 30.6+ 1.9  1444.9+13204  0.01+1x1074
1.5x03cm 114024  60.8+2.4°% 66.7+3.6%4  1551.2+7.2¢  0.01£1x1074
1.0x03cm  1.5+£0.19 597+ 1.8 84.4+38A  15526+9.1%  0.02£2x 107"
0.5%0.3cm  18+02A 12324229 110.1 £2.3% 15459+ 11.1°4  0.01+2x107*4

Position: top-left (point 7 of the matrix)

Control 3.8+0.1° 4259426  202.9+1.9% 15552+ 11.3* 0.01£1x1074
2.0x1.5em  0.6+0.1%A 8.0 +3.8% 31.94£29% 14442+ 11.7°4  0.02+1x 1074
2.0x1.0em 0.7 +0.1° 9.6 + 0.5 31.0+£2.1%  14455+17.0%4  0.02+1x 1074
1.5%03cm  0.9+0.1%  59.9+3.2¢A 67.6+7.1°4 15484 +12.04 0.02+1x 1074
1.0x03cm  15+£0204 5894374 84.4+£2.6W  1549.0+ 129 0.01=£1x 1074
0.5x0.3cm  18+02%A  1205+3.4%  1125+3.0% 15362+ 11.1*4  0.01=1x1074

Position: bottom-left (point 17 of the matrix)

Control 3.8+02%  4242+28%  205.6+2.1%  1546.1+9.5  0.01£1x1074
2.0x1.5em  0.6+02%4  [1.3+1.3% 31.1£4.0% 14504 +103%  0.02+1x107%4
2.0<1.0ecm  0.7+0.1%  10.9+ 1.5 303+2.8  1459.0+9.5%  0.01=1x107%*
1.5x0.3em  1.1+0.14  59.4+33% 68.1+3.0¢4  15342+9.0%  0.01£1x1074
1.0x03cm 164019  583+£4.]°A 8234254  1538.1+13.54  0.01+2x10
0.5x0.3cm 194024 11714224 11344224 15499+ 11.7%4  0.01+1x107*

Position: top-right (point 9 of the matrix)

Control 37402  427.6+2.9"  203.3+3.3% 15516411204 0.01x1x107
20x1.5ecm  (.7+£0.1%A 12.5£2.30 31.9+£4204  14465+7.0°4  0.02+1x 10734
2.0x1.0ecm  0.7+0.1%A 114+ 1.6% 2814474 14564+ 7.6  0.02%1x 10734
1.5x0.3em  1.0+0.14  57.9+2.5% 68.0+524  15434+8.6  0.02£1x1074
1.0x03cm  15£0.19  59.6+4.0% 85.3+£3.19% 15448+ 1054 0.02+1x 1074
0.5x0.3cm  18+02%A  117.2+19%  1143+3.1%  1547.1+8.04  0.02+1x107*

Position: bottom-right (point 19 of the matrix)

Control 37402 42924220 2023421  15482+8.1%4  0.01x1x10%A
2.0<1.5em  0.6+0.1°  [1.5+24% 20.8+2.4% 14340+ 10.6% 0.02£1x107
20x1.0cm  07+£02%  11.5+1.3% 30242.6" 14374411004 0.01=1x 107
1.5x03em 104014  57.1+3.4°%4 67.9+4.6%  1540.1+ 113 0.01+1x107*
1.0x03cm  15+£0204  57.8+£2.8%A 86.4+ 4.6 15407+ 12.1°4 0.01=1x 1074
0.5<03em  19+0.1%%  1233+23%  1146+2.6%  15492+8.0%  0.02£1x1074

PP (peak-to-peak), ENG (energy), INT (integral), Ve (ultrasound velocity), and L (thickness). Results are
expressed as mean + standard error. Different lowercase letters indicate statistically significant differences
(95%) for each ultrasound parameter as a function of the size of bone fragments. Uppercase letters indicate
statistically significant differences (95%) for the location of these bone pieces within the chicken breast.
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Table 7. Ultrasound parameters computed in the time-domain (energy-distribution) for each
bone size and location within the sample. Multifactor ANOVA homogeneous groups.

Position: center (point 13 of the matrix)

Type VAR, (V?) SKE; KUR¢ ENT;

Control 0.34+ 6 x 10734 —0.11+£9x 103 892+0.06°* 3.3+£0.1°4
2.0x1.5ecm  7x103+1x1073%4  0.10+£7x 107" 8.03+0.07** 2.1+0.1**
2.0x1.0cm 8 x 103+ 1 x 1073%4 0.11£8x107%  8.12+0.06™  2.1£0.1"
1.5%0.3 cm 0.04 £ 6 x 10734 -0.03£8x 10734  821£0.07°4 2.4+£0.1°4
1.0x0.3 cm 0.07 £3 x 107344 -0.03£8x 10734  830+0.07% 2.6+0.2%
0.5%0.3 cm 0.10+ 6 x 10734 -0.06+£6x 10739 85240074 2.7+£0.1¢A

Position: top-left (point 7 of the matrix)

Control 0.34+£8x 107324 —0.12+6x 10733 884+0.06" 33+0.1%4
2.0x1.5ecm  7x103£2x 10734 0.10£8 x 107" 8.06+0.06"* 2.1 +0.1**
2.0x1.0cm  9x103+£1x1034 0,107 x 107 8.06+0.06"A  2.1+0.1%4
1.5%0.3 cm 0.04 £ 8 x 10734 —0.03£5x 10734 819+0.054 2.4+0.1°4
1.0x0.3 cm 0.08 £2 x 107344 -0.03+£6x 10734  829+0.08% 2.6+0.1%
0.5%0.3 cm 0.10+ 7 x 1073¢A —0.07+8 x 1034 855+0.07*  2.7+0.1°A

Position: bottom-left (point 17 of the matrix)

Control 0.34+7 x 10734 -0.11+6x 103 887+0.05%  3.2+0.1%
2.0x1.5cm  7x103+£1x1034  0.10£7x 107 8.08+0.06"4  2.1+0.1%4
2.0x1.0cm  8x103+£1x103 0,106 x 107"  8.05+0.05%4 2.1+0.1%
1.5%0.3 cm 0.04£6x 10734 —0.04+7 x 10734 824+£0.074 254014
1.0%0.3 cm 0.08 £3 x 107344 —0.05£6x 10734  833+0.064 2.6+0.1%
0.5%0.3 cm 0.10£7 x 10734 —0.07+£6x 10739 856+0.064 2.7+0.1%4

Position: top-right (point 9 of the matrix)

Control 0.33+£5x 1034 —0.11£8x 10734 892+0.084  3.2+0.1°4
2.0x1.5ecm  7x103+1x1073%4  0.10+£7x 107 8.06+0.07** 2.1 +0.1**
2.0x1.0cm  8x103+1x103%4  0.10+£7x 107"  8.14+0.08" 22+0.1"
1.5%0.3 cm 0.04 £5 x 10734 —0.03£5x 10734 823+0.074 244014
1.0%0.3 cm 0.08 £ 4 x 107344 -0.03£5x 10734  832+0.07% 2.6+0.1%
0.5%0.3 cm 0.10 £ 8 x 10734 -0.06+£5x 10739 85440054 2.7+£0.1%A

Position: bottom-right (point 19 of the matrix)

Control 0.34+£8x 10734 -0.11£8x 10734  891+£0.054 3240.1%4
2.0x1.5ecm  7x103+1x1073%4  0.10£8 x 107"  8.07+0.07** 2.1+0.1*
2.0x1.0cm 8 x 103+ 1 x 1073%4 0.11£6x107%  8.16+0.054 2.1+0.1"
1.5%0.3 cm 0.04 +£4 x 10734 -0.03£5x 10734  821+£0.06°4 2.4+0.1°4
1.0%0.3 cm 0.07 £3 x 107344 -0.03+£6x 10734  833+0.064 2.5+0.1%
0.5%0.3 cm 0.10£7 x 10734 —0.07£5x 10739 854+0.06% 2.7+0.1%4

VARt (variance in time-domain), SKEt (skewness in time-domain), KURt (kurtosis in time-domain) and ENTt
(entropy in time-domain). Results are expressed as mean =+ standard error. Different lowercase letters indicate
statistically significant differences (95%) for each ultrasound parameter as a function of the size of bone
fragments. Uppercase letters indicate statistically significant differences (95%) for the location of these bone
pieces within the chicken breast.
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Table 8. Ultrasound parameters computed in the frequency-domain (energy-magnitude
related) for each bone size and location within the sample. Multifactor ANOVA

homogeneous groups.

Position: center (point 13 of the matrix)

Type My (MHz) F; MP

Control 2177.8 + 64.6 1.00£0.01%4  296.2 +16.9%4
2.0x1.5 cm 396.1 + 64.6°4 1.02+£0.01%4 42.7+3.7%4
2.0x1.0 cm 333.7 + 59.4%4 1.03+£0.01bA 43.1 £5.7%4
1.5%0.3 cm 770.1 £ 62.9A 1.03 +0.02bA 89.8 + 6.7°A
1.0%0.3 cm 787.5 £ 73.5%A 1.02 +£0.01bA 98.0 + 6.6%4
0.5%0.3 cm 827.7 £ 62.4A 1.03£0.01A 103.4 £ 11.3¢A

Position: top-left (point 7 of the matrix)

Control 2094.8 £ 65.934 1.00 £ 0.0134 297.0 + 8.334
2.0x1.5 cm 354.3 +56.3% 1.02 +£0.01% 41.4+5.5%
2.0x1.0 cm 383.0 + 67.7°* 1.02+£0.00%*  46.7+10.1%4
1.5%0.3 cm 791.6 + 63.4°A 1.02 +£0.01bA 89.1 £ 7.5
1.0%0.3 cm 831.5+65.3%A 1.03+£0.01bA 89.4 £ 10.6%
0.5%0.3 cm 862.9 £ 71.2¢A 1.03£0.01A 94.5 £ 14.5%

Position: bottom-left (point 17 of the matrix)

Control 2164.4 +62.7%4 1.01+£0.01%4  294.1 + 14,0
2.0x1.5 cm 393.6 +49.204 1.02 +£0.01% 35.5+8.4%
2.0x1.0 cm 395.0 + 67.6°4 1.02+£0.01bA 46.8 + 8.1%4
1.5%0.3 cm 805.2 £ 68.6% 1.03+£0.01bA 87.2 £ 14.0%4
1.0%0.3 cm 785.8 £57.8A 1.02 £ 0.02bA 952+ 14.3¢A
0.5%0.3 cm 851.9 £ 61.2¢4 1.03 +0.00°A 103.7 £ 11.3¢A

Position: top-right (point 9 of the matrix)

Control 2116.5 +£61.9%A 1.00 +£0.0134 295.7 + 8.134
2.0x1.5 cm 376.6 + 54.8%4 1.02+£0.01%4 38.9+8.1%
2.0x1.0 cm 379.8 + 49.2b4 1.03 £ 0.02bA 47.0 + 8.4%4
1.5%0.3 cm 757.9 £ 67.2¢4 1.02 £ 0.02bA 93.6+8.1A
1.0%0.3 cm 816.1 £ 55.1¢A 1.03 +£0.01bA 97.9 £ 8.1A
0.5%0.3 cm 835.1 £ 60.7°A 1.03 +0.02¢A 108.4 + 8.4¢A

Position: bottom-right (point 19 of the matrix)

Control 2057.9 £71.7%4 1.00 £ 0.0134 298.3 £2.5%
2.0x1.5 cm 305.9 + 58.8%4 1.02 £ 0.00%4 33.5+6.4%
2.0x1.0 cm 314.9 + 58.9%4 1.04 +£0.01bA 40.4 +£4,1%
1.5%0.3 cm 733.9 £ 57.6% 1.02 +£0.01bA 90.7 + 4.8°A
1.0%0.3 cm 782.2 £ 67.7°A 1.03 +£0.01bA 92.8 +7.3¢A
0.5%0.3 cm 798.5 £ 67.4A 1.02£0.014 96.5 £ 5.8

MO (zero-order moment), Fr (center frequency), and MP (maximum peak of the frequency spectrum). Results
are expressed as mean =+ standard error. Different lowercase letters indicate statistically significant differences
(95%) for each ultrasound parameter as a function of the size of bone fragments. Uppercase letters indicate
statistically significant differences (95%) for the location of these bone pieces within the chicken breast.
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Table 9. Ultrasound parameters computed in the frequency-domain (energy-distribution) for

each bone size and location within the sample. Multifactor ANOV A homogeneous groups.

Position: center (point 13 of the matrix)

Type VAR, SKEs, KUR, ENT,p

Control 6782.2 + 68.2% 1.45+0.02%4 3.7+£0.1%  0.5+0.1°%4
2.0x1.5 cm 160.4 + 428 1.29+£0.07%A 33 +0.3%A  28+0.20
2.0x1.0 cm 166.4 £ 56.8%* 1.36£0.054  32+0.1%  27+£02%
1.5%0.3 cm 954.8 + 75.3¢A 1.35+0.17A 3.5+£0.14 23£0.1°4
1.0x0.3 cm 1776.8 + 88.79A 1.35+£0.06%4  33+£0.2%  23+£0.14
0.5%0.3 cm 1884.7 +75.59 1.31+£0.03%A  3.2£0.1%4 22£0.14

Position: top-left (point 7 of the matrix)

Control 6769.8 £ 69.234 1.45+£0.0334 3.7+£0.1%4  03£0.1%4
2.0x1.5 cm 107.1 £ 53.9% 1.32+£021%A  34+0.204  29+0.1%
2.0x1.0 cm 120.6 + 42.6%4 1.25+0.2% 3.1+£03% 29+0.2%
1.5%0.3 cm 955.3 +76.2¢A 1.38 +£0.09A 3.5+£03%4 24£0.24
1.0x0.3 cm 1715.3 + 64.09 1.32+£0.15%A  33+£04%A  24+£0.14
0.5%0.3 cm 1895.1 £77.744 1.38+£0.03%A  35+0.1%  25+0.1°

Position: bottom-left (point 17 of the matrix)

Control 6776.9 + 62.2% 1.43 £0.03% 3.6+£0.1%4  04£0.1°4
2.0x1.5 cm 100.3 +45.3% 1.35+0.11%A  33+£0.204  29+0.1%
2.0x1.0 cm 129.1 +£47.1% 1.36 £0.10%*  3.2+£04%  2.8+0.1%
1.5%0.3 cm 898.9 + 69.2¢4 1.42 £0.02¢4 3.3+£0.14 25£0.14
1.0x0.3 cm 1726.4 + 58.994 1.37+£0.12%A  32+0.204  24+0.2%
0.5%0.3 cm 1886.2 £ 54.6% 1.38+£0.03%A 33 +0.1% 25+0.2%

Position: top-right (point 9 of the matrix)

Control 6746.8 £77.734 1.45+0.03% 3.7+£0.1%  0.6£0.2%4
2.0x1.5 cm 122.6 + 42.6** 1.30£0.12%A  32+0.204 3.,0+0.2%
2.0x1.0 cm 138.7 £ 56.8% 1.25+£0.12%  3.1+£02%4 29+0.1%
1.5%0.3 cm 931.0 £ 65.3¢A 1.36 = 0.094 324014 24£0.14
1.0x0.3 cm 1712.3 +£78.794 1.32+£0.03%A  3.2+£0.2%4 25+£0.14
0.5%0.3 cm 1890.3 +51.994 1.34+£0.06%4  3.0£0.24  25+£0.2°4

Position: bottom-right (point 19 of the matrix)

Control 6795.3 £ 67.68 1.45+£0.0284 3.7+£0.1%4 04£0.2%
2.0x1.5 cm 128.0 + 38.8%* 1.33£0.08*A  32+0.3%A  29+0.1%
2.0x1.0 cm 141.6 + 36.8% 1.28+£0.05*4  3.1+£02%  3.0+0.1*
1.5%0.3 cm 888.5 +40.6% 1.32 +£0.05 3.24+£024 24£0.1°4
1.0x0.3 cm 1722.1 +£59.09 1.37+£0.10%A  33£0.254  24+£0.24
0.5%0.3 cm 1840.2 £ 47.6% 1.39+£0.02%A  37+0.1%4  25+0.2%

VARsp (spectral-variance), SKEsp (spectral-skewness), KURsp (spectral-kurtosis) and ENTsp (spectral-
entropy). Results are expressed as mean + standard error. Different lowercase letters indicate statistically
significant differences (95%) for each ultrasound parameter as a function of the size of bone fragments.
Uppercase letters indicate statistically significant differences (95%) for the location of these bone pieces within
the chicken breast.
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A statistically significant (p<0.05) effect of the BF size was found on the time and frequency
domain ultrasound parameters (Tables 6 to 9). The presence of BFs within chicken breast
samples disrupted the energy level of control signals (reduction in signal amplitude) in both
temporal (Table 6 and Fig. 8) and frequency (Table 8 and Fig. 10). BF led to a statistically
significant (p<0.05) reduction in the energy-related (Table 6) and energy distribution (Table
7) ultrasound parameters. Conversely, the location of the BF did not significantly (p>0.05)
affect the ultrasonic parameters, which shows the robustness of the technique to measure the
presence of bones of different sizes, regardless of their spatial location (Tables 6-9).
Moreover, non-statistically significant (p>0.05) effect of BF size or location was found on L
(Table 6), which demonstrates that the incorporation of BFs of varying sizes, in different
locations, had no impact on the final thickness of the sample, which could have altered the
ultrasonic measurements.

By using the average values of PP, ENG and INT (Table 6), it was possible to sort the samples
from the lowest to the highest energy attenuation in five homogeneous groups (LSD intervals
(p<0.05) from ANOVA), as follows: control (3.8 V, 424.5 V? and 204.9 V ps) > 0.5 x 0.3
cm (1.8 V, 1232 VZand 110.1 V ps)> 1.0 x 0.3 cm (1.5 V, 59.7 V? and 84.4 V us) > 1.5 x
0.3 cm (1.1 V, 60.8 V2 and 66.7 V us), 2.0 x 1.0 cm (0.8 V, 6.9 V2 and 30.6 V ps) > 2.0 x
1.5 cm (0.7 V, 11.5 V2 and 31 V ps). As can be seen in Table 6, the larger sizes of BFs
exhibited a higher attenuation, compared to the smaller ones. These results were consistent
with the experimental signals and images depicted in Figs. 8 and 9. In addition, the statistical
results for V. indicated that there were no statistically significant differences (p>0.05) in the
speed of ultrasound waves between the control group and BFs of sizes 1.5 x 0.3 cm, 1.0 X
0.3 cm, and 0.5 x 0.3 cm. However, a noticeable decrease in the ultrasound velocity was
found for the larger BF sizes (2.0 x 1.5 cm and 2.0 x 1.0 cm). These results suggest that for
small bones the wave front (used to calculate velocity) travels only through the meat flesh
(where velocity is higher) and therefore velocity is not altered, compared to the control
sample. However, when the bone size is larger, the wave front has traveled through the bone
(with lower ultrasound velocity than flesh) and therefore ultrasonic velocity decreases.

Similar results were reported by Correia et al. (2008) in the detection of BFs of different sizes
(large size = 15.75 mm?, medium size = 9.92 mm? and small size = 6.18 mm?) inserted in
skinless chicken breasts by using a single point-measure pulse-eco ultrasound technology.
These authors quantified the influence of these BFs on both the amplitude ratio and V. . They
found that the presence of BFs led to a statistically significant (p<0.05) increase in ultrasonic
attenuation, while non statistically significant differences (p>0.05) were found in V. This
study reported V. values of 1564 + 2 m/s for chicken breast samples, similar to the values of
the present work (Table 6). Although Correia et al. (2008) claimed that the V. could not be
used to detect the presence of BFs, our results showed that the largest BFs, which were
obtained from other parts of the chicken skeleton such as vertebra (2.0 x 1.5 cm, Fig 1E 1)
and chest (2.0 x 1.0 cm, Fig 1E i1), were detected by using Ve.

The greater energy attenuation and delay of the ultrasound wave generated in larger bone
fragments (Table 6), can be attributed to the presence of air within the bone structure. When
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ultrasound waves propagate through the bone internal structure, they disperse due to the
presence of internal air voids, phenomenon that will be more pronounced as the size of the
bone increases.

The presence of BFs also influenced the energy-distribution parameters (VARt, SKEt, KURt
and ENTt, Table 7). As for the energy magnitude parameters, five homogeneous groups were
found by using the LSD intervals. The control, 0.5 x 0.3 cm BF, 1.0 x 0.3 cm BF, 1.5 x 0.3
cm BF, while the last group was integrated by sizes of 2.0 x 1.5 cm and 2.0 x 1.0 cm. The
higher BF sizes led to a decrease in the dispersion of the ultrasound waves (VARy), left-
skewed the time-domain signals (positive SKE; values), reduced the tailedness (KUR;) and
the randomness (ENT?). Thus, a noticeable trend was observed from the energy time-domain
distribution: the larger the BFs, the most pronounced changes in the energy-distribution of
the ultrasound signals waves.

These results can be explained since the increase in BF size represents a barrier for the
propagation of the ultrasonic wave causing different effects related to wave amplitude and
energy distribution (Collazos-Escobar et al., 2025d). As a result, the presence of BF led to an
important modifications in the statistical first-order parameters of the ultrasonic time-domain
signals. The reduction in VAR values of samples with BF indicated a lower heterogeneity in
wave propagation (Table 7), suggesting that larger BFs act as reflector/scatterer of energy
within the propagation medium. Positive SKE; values in an ultrasound signal, when measured
in the presence of BF compared to control signals, indicate changes in waveform asymmetry
consistent with phase shifts or energy reflection patterns resulting from BF-induced
interference at the propagation medium interfaces between the sample and the BF.
Furthermore, the reduction in KUR¢ and ENT; (Table 7) values signifies a flattening of the
amplitude distribution, indicative of fewer extreme deviations in signal intensity and a shift
toward a more deterministic signal (less entropic behavior) profile. From an applied
perspective, these features provide a measurable acoustic fingerprint that can be used for the
non-destructive detection and size characterization of BFs within biological or food matrices.

As regard of the energy-magnitude related variables computed in the frequency-domain (Mo,
F: and MP, Table 8), the BF presence within chicken breast samples significantly (p<0.05)
reduced Mo and MP (Fig. 5) and also modified the center-frequency of phs (Fr). Multifactor
ANOVA of My and MP showed three independent groups were clustered by LSD intervals.
Control, a group integrated by the BF of 1.5 x 0.3 ¢cm, 1.0 X 0.3 cm and 0.5 x 0.3 cm, and
another group for sizes of 2.0 x 1.5 cm and 2.0 x 1.0 cm. While the results of F; led to also
discriminate three groups (Table 8).

These changes can be explained by the fact that the central energy distribution in the phs is
altered when the propagating ultrasound wave encounters BFs (Fig. 10), which act as acoustic
impedance mismatches. Such mismatches induce partial reflection, scattering, and
frequency-dependent attenuation. As a result, the spectral energy shifts toward lower
frequencies, reducing the overall magnitude parameters (Mo and MP) and modifying F;. This
behavior is consistent with the combined effects of diffraction and absorption within
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heterogeneous medium, where the size and composition of BFs control the degree of spectral
distortion and energy distribution across the frequency domain.

Finally, the BFs presence also influenced the phs energy-distribution (Table 9). The higher
BFs produced an important decrease in the dispersion of phs (VARsy), right-skewed (positive
SKEs, values but smaller than control; Fig. 10), reduced the tailedness and increased the
disorder in the distribution of energy of phs (ENTsp) compared to the control phs. Thus, the
frequency-domain energy-magnitude and distribution parameters were also adequate to
detect the presence of BFs in the breasts.

3.2 BF detection using USI and latent-based multivariate statistical process control

The statistical results considering the experimental ultrasound images for the detection of
BFs by using the RSS and T? and both the TDA, FDA and TFDA approaches (section 2.7.1),
are summarized in Tables 10 to 13. Additionally, the results of the feature-extraction
approach (section 2.7.1.3) are represented as Supplementary material (Table S1-S3).

The modeling results (Tables 10, 11 and 12) reported that the average values of A ranged
between 88.2 to 96.07%, Se were between 0.88 to 0.96 and S, varied from 0.88 to 0.96, for
TDA, FDA and TFDA in all control limits of both RSS and T? and their LA. Conversely, the
statistical performance of the RSS and T? considering the feature extraction approach
(Supplementary material, Table S1, S2 and S3) exhibited values of A varied from 80 to
93%, while both Se values were between 0.63 to 0.94 and S, were between 0.86 to 0.94 for
feTDA, feFDA and feTFDA in all control limits and LA. To complement this, the ANOVA
results revealed that both Acc, Se and Sy of TDA, FDA and TFDA were significantly (p<0.05)
higher than those of feTDA, feFDA and feTFDA. This demonstrates the noteworthy
performance of the former approach over feature extraction for detecting BFs using both
multivariate control charts (RSS and T?) computed in the MIA-based MSPC strategy.

The statistical results of multifactor ANOV A models computed from TDA, FDA and TFDA
manifested significant differences (p<0.05) in the average Acc Se and S, values of the
optimized PCA models by using different control limits and LA. In all cases, the optimized
PCA models obtained from the multi-objective optimization process in which the goal was
to simultaneously maximize both S and S, with the lower number of LVs (Fig. 11) were
considered the best classifiers in each approach and in each multivariate statistic used.
Moreover, it can be seen in Fig 11 the typical plateau of the classification metrics via RSS
employing TDA (Acc, Fig. 11A, Scvs Sy, Fig. 11B), FDA (Ac, Fig. 11E, Sevs S;, Fig. 11F)
and TFDA (Ac., Fig. 111, Se vs Sp, Fig. 11J) and for T? using TDA (Acc, Fig. 11C, Se vs Sp,
Fig. 11D), FDA (Ac., Fig. 11G, Se vs Sp, Fig. 11H) and TFDA (A, Fig. 11K, Sc vs S;, Fig.
11L) wherein the multi-objective optimization problem found the OPCs in all cases in the
point of crossing of Sc and S,,.
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Fig. 11. Classification performance of the multivariate control statistics used for detection of
bone fragments in chicken breast. Average A for both RSS and T? considering TDA (A, C),
FDA (E, G) and TFDA (I, K) approaches. Average Se and Sp for both RSS and T2
considering TDA (B, D), FDA (F, H) and TFDA (J, L) approaches. TDA (time-domain
approach), FDA (frequency-domain approach), TFDA (time-frequency domain approach),
Acc (overall accuracy), Se (sensibility), S, (specificity), RSS (Residual Sum Squares) and T2

(Hotelling’s T-squared).
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Table 10. Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control statistics

for detection of bone fragments using time-domain approach (TDA).

TDA-RSS

LA (%) CL (%) OPCs A (%) S. S,
90 6 89.00+0.84%* 0.90+0.02*A 0.88+0.02
. 95 8  91.61+0.81®® 0.92+0.01® 0.91+0.02°
975 12 93.90+0.85C 0.94+0.02°C 0.94 +0.02:
99 14 94.25+1.04C 0.94 +0.03°C 0.95+ 0.02:C
90 17  95.44+0.90°* 0.96+0.01"* 0.95+ 0.02"
50 95 19 95.49+0.82°A 0.96+0.02°* 0.95+0.02°
975 21  95.75+0.82° 0.96+0.01"A 0.96 + 0.02%
99 23 95.67+0.95°A 0.96+0.01* 0.96+0.02°
90 20 95.61+0.84%A 0.95+0.01%* 0.96+0.02°
s 95 23 95.60+0.83%A 0.96+0.01°* 0.95+0.02°
975 25 9578+ 0.81° 0.96+0.02°A 0.96 + 0.02%
99 27  95.90+0.92° 0.96+0.02%* 0.96+0.02°
90 23 95.72+0.79°A 0.96+0.01°* 0.96+0.02°
100 95 25 95.53+0.80"" 0.96+0.02%* 0.96+0.02°
975 26 95.19+0.74%A 0.95+0.02°A 0.96 + 0.02%*
99 28 9555+ 1.05°A 0.95+0.02%* 0.96+0.02°

TDA-T

LA (%) CL (%) OPCs  Ac (%) S. S,
90 42 8820+ 1.10°A 0.88+0.02%* (.88 +0.02%
95 45 91.40+1.04® 0.92+0.02® 0.91 +0.02%8
97.5 47  93.38+0.91* 0.94+0.02°C 0.93 +0.02:C
99 48 9448+ 1.01®® 0.95+0.02° 0.94 + 0.02%
90 54 94.89+0.97°A 0.94+0.02%* 0.95+0.02°
95 55 9538+ 1.01"® 0.96+0.02"* 0.95+ 0.02"
975 55  95.40+0.99%B 0.96+0.02°A 0.95 +0.02%
99 55 9538+ 1.00" 0.96+0.02%* 0.95+0.02°
90 57 9520+ 1.02°A 0.96+0.02%* 0.95+0.02°
95 57 9518+ 1.01°* 0.96+0.02%* 0.95+0.02°
B Tes 57 9517+ 1000 096002 095% 002"
99 57 95.14+0.99°A 0.96+0.02°* 0.95+0.02°
90 58 94.94+ 1.00A 0.95+0.02%* 0.95+0.02°
95 58 94.93+ 1.00%A 0.94+0.02°4 0.95 +0.02°A

100

97.5 58  94.93+0.99%A 0.94 +0.02%A 0.95 +0.02%
99 58  94.92+0.98%A 0.94+0.02°* 0.95+0.02°

TDA (time-domain approach), RSS (Residual Sum Squares), T?> (Hotelling’s T-squared), LA (limit
augmentation), CL (control limit), OPCs (optimal number of principal components), Acc (overall accuracy), Se
(sensibility) and Sp (specificity). Results are expressed as mean + standard error. Different lowercase letters
indicate statistically significant differences (95%) of each goodness of classification metric (Acc, Se and Sp) as
a function of the LA. Uppercase letters indicate statistically significant differences (95%) of Acc, Se and Sp as
a function of the computed CL.
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Table 11. Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control statistics

for detection of bone fragments using frequency-domain approach (FDA).

FDA-RSS
LA (%) CL (%) OPCs A (%) S. S,
90 6 89.31+123% 0.90+0.04° 0.88 +0.02%
95 8  91.75+0.84® 0.92+0.01** 0.91 +0.02%®
0 975 10 9335+ 1.13% 0.93+0.03%* 0.94+0.02:
99 12 9540+ 1.10°C 0.96 = 0.02*® 0.95 + 0.02:C
90 15  95.44+0.96°A 0.95+0.02°% 0.96 + 0.02%*
95 17 95.83+0.98"A 0.96 + 0.02"AB 0.96 + 0.02>A
50
975 19 95.85+0.95" 0.96+0.01'® 0.96+ 0.0204
99 20 95.63+0.99°A 0.96+0.02°® 0.96 + 0.02%*
90 18 95.84+0.91" 0.96+0.01° 0.96+ 0.02b*
s 95 20 95.80+0.84°A 0.95+0.02°% 0.96 + 0.02%*
975 21 95444092 0.95+0.02% 0.96+ 0.0204
99 23 95.77+0.81" 0.96+0.01° 0.95+0.02%
90 21 95.72+0.84%A 0.96+0.01° 0.96 + 0.02%*
100 95 23 95.93+0.73%A 0.96+0.01° 0.96 + 0.02%
97.5 24 9574+ 0.90°* 0.96+0.02% 0.96+ 0.02°A
99 25 95.61+0.81" 0.96+0.02° 0.96+ 0.02%
FDA-T?
LA (%) CL (%) OPCs A (%) S. S,
90 41 88.07+132% 0.88+0.03*" 0.88+0.02%
0 95 43 9135+ 136" 0.91+0.03® 0.92+0.02:
97.5 45 93.67+1.17°C 0.94+0.02:°C 0.94 +0.02°
99 46 94.94+0.92® 0.95+0.02:C 0.95+ 0.02:
90 55 95.49+0.88%A 0.96+0.02°% 0.95+0.02%
50 95 55 95.44+0.85"A 0.95+0.02°* 0.95+0.02°A
97.5 55 95.44+0.84% 0.95+0.02%A 0.95+0.020A
99 55  95.41+0.83% 0.95+0.02° 0.95+0.02%
90 57 95.30+0.90°A 0.95+0.02°% 0.95+0.02%*
95 57 9525+0091% 0.95+0.02° 0.95+0.02%
75
97.5 57  9525+0.91° 0.95+0.02%* 0.95+0.020A
99 57  95.24+0091%A 0.95+0.02% 0.95+0.02%
90 59 952940964 0.95+0.02% 0.95+0.02%
95 59 95.30+0.96" 0.95+0.02°4 0.95+0.02%
100
975 59 9530+ 0.96" 0.95+0.02%4 0.95+0.0204
99 59  9530+0.96°A 0.95+0.02°% 0.95+0.02%

FDA (frequency-domain approach), RSS (Residual Sum Squares), T? (Hotelling’s T-squared), LA (limit
augmentation), CL (control limit), OPCs (optimal number of principal components), Acc (overall accuracy), Se
(sensibility) and Sp (specificity). Results are expressed as mean + standard error. Different lowercase letters
indicate statistically significant differences (95%) of each goodness of classification metric (Acc, Se and Sp) as
a function of the LA. Uppercase letters indicate statistically significant differences (95%) of Acc, Se and Sp as
a function of the computed CL.
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Table 12. Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control statistics
for detection of bone fragments using time-frequency domain approach (TFDA).

TFDA-RSS
LA (%) CL (%) OPCs A (%) S. S,
90 6 88.24+120% 0.88+0.03* 0.89+0.02A
95 8  93.02+0.65® 0.94+0.01°® 0.92+0.02°
975 9  94.46+0.86°C 0.95+0.02:C 0.94 +0.02:
99 11 95.42+0.96°C 0.95+0.02:C 0.95 + 0.02:C
90 15 96.07+0.86"* 0.96+0.01** 0.96+ 0.02"
50 95 16  96.03 +0.85°A 0.96+0.01%* 0.96+ 0.02°
975 19 95.88+0.81"" 0.96+0.01%* 0.96+0.02°
99 20 95.81+0.81% 0.96+0.01° 0.96+0.02°A
90 19 95.81+0.78A 0.96+0.01** 0.96+0.02°
s 95 21 95.80+0.87* 0.96+0.01° 0.96+0.02°A
975 22 95.77+0.91" 0.96+0.01%* 0.96+0.02°
99 23 95.75+0.84% 0.96+0.01° 0.96+0.0204
90 22 95.85+0.80** 0.96+0.01° 0.96+0.020A
100 95 24 95.70+0.83% 0.96+0.01° 0.96+0.0204
975 26 95.70+0.86* 0.96+0.01%* 0.96+0.02°
99 28 95.89+0.81" 0.96+0.01° 0.96+0.0204
TFDA-T?
LA (%) CL (%) OPCs A (%) S* S,*
90 47 88.20+1.19% 0.88+0.03 0.88+0.02
95 50 91.99+0.87® 0.92+0.02 0.92+0.02
975 51 93.57+1.03C 093+0.02 0.94+0.02
99 52 94.23+0.85C 0.94+001 0.94+0.02
90 59 94.58+1.01" 0.93+0.03 0.96+0.03
95 59 94.54+1.03** 093+0.03 0.96+0.03
975 59 94.54+1.03%A 0.93+0.03 0.96+0.03
99 59 94.54+1.03** 0.93+0.03 0.96+0.03
90 60 93.09+ 1.44°C 0.92+0.05 0.94+0.03
95 60 93.09+1.43<C 092+005 0.94+0.03
7 T575 60 93.09% 143C 0924005 094%003
99 60 93.09+ 1.43€ 0.92+0.05 0.94+0.03
90 61 92.91+2.63€C 093+008 0.93+0.03
100 95 61 92.91+2.63€ 093+008 0.93+0.03
975 61 92.91+2.63C 093+0.08 0.93+0.03
99 61 92.91+2.63€ 093+008 0.93+0.03

TFDA (time-frequency domain approach), RSS (Residual Sum Squares), T?> (Hotelling’s T-squared), LA (limit
augmentation), CL (control limit), OPCs (optimal number of principal components), Acc (overall accuracy), Se (sensibility)
and Sp (specificity). Results are expressed as mean + standard error. Different lowercase letters indicate statistically
significant differences (95%) of Acc as a function of the LA. Uppercase letters indicate statistically significant differences
(95%) of Acc as a function of the computed CL. *The residuals from multifactor analysis of variance (ANOVA) models
failed to meet the assumptions of normality and homoscedasticity, thus rendering both models unsuitable for practical
inference.
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The results of TDA (Table 10) showed a great classification performance of control and OC
images. Based on the LSD intervals, the optimized PCA model using RSS with 17 OPCs,
employing 50% augmented the 90% control limit exhibited high classification performance
(Acc = 95.44, Se = 0.96 and S, = 0.95) with the minimum number of LVs. In contrast, the
optimized PCA model using T? required more LVs (OPCs= 55), maintaining the
augmentation of 50% of the limit 95% to achieved similar classification performance to RSS
(Acc =95.38, Se=0.96 and S, = 0.95).

Closely, the statistical results of FDA (Table 11) exhibited quite similar behavior of TDA,
the optimized PCA using RSS with 17 LVs, augmented 50% control limit at 95% showed an
Ace =95.85, Se=0.96 and S, = 0.96 and T? control statistic reached an Acc = 95.44, Sc=0.95
and Sp = 0.95 using 55 LVs and the same LA and control limit of RSS. As expected, the
classification results for TDA and FDA were closely aligned by using both RSS and T? (Table
10 and 11). This result could be attributed to the fact that the presence of BFs produced an
important attenuation of the ultrasound energy, which is closely related to both temporal and
frequency domains (Suen et al., 2016). Therefore, the PCA model based RSS and T? were
able to satisfactorily detect the BFs by using both energy-magnitude and energy distribution
parameters from the time and frequency domains (as explained in section 3.1). The detection
via RSS suggested that the presence of BFs led to a detectable breakage in the correlation
structure of the control model and T? indicated extreme values (lower energy related and
magnitude values of ultrasound parameters) in these images compared to the control ones
(Kruse et al., 2014). Nevertheless, the RSS statistic was the most robust classifier to maximize
the goodness of classification of control and OC images due to its simplicity in the use of
lower number of LVs than the T? statistic.

The statistical results of the last approach, which integrated TDA and FDA (TFDA, Table
12), revealed a slight but statistically non-significant (p>0.05) enhancement in RSS
classification performance and did not evidence an improvement using T? (p>0.05). In this
regard, when model input variables potentially contribute to describe the response, selecting
specific input variables can improve model results. Conversely, adding more variables could
worsen the model’s accuracy (Zhang, 2014). Therefore, in the case of T? the combination of
TDA and FDA in the same framework to feed the PCA model caused redundance (features
which have explained the same extreme values) and promote the use of more LVs (Fig. 11K
and 11L).

Nonetheless, the use of TFDA-RSS contributed to reduce 2 LVs (15 OPCs, Table 12, Fig.
111 and 11J) maintaining the 50% augmented control limit at 90% and non-significant
differences (p>0.05) in the figures of merits (Acc=96.07%, Se=0.96 and S,=0.96) compared
to TDA and FDA (Ac=95.83%, Sc=0.96 and Sp=0.96). This result suggests that the
combination of both energy-related and energy-magnitude ultrasound parameters computed
in the time and frequency domains made the PCA model more robust for the detection of any
disturbance in the correlation structure not only between the variables referred with the
energy and distribution in time and frequency domains but also the relationship between both
spaces, thus, less LVs were needed to maximize the classification of control and OC images.
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In order to analyze in detail the classification performance of the LSD based selected
optimized PCA models influenced by the approaches considered, the statistical results in
Table 12 illustrate together the CFMs, the number of images correctly classified and
misclassified by using both multivariate control statistics.

As can be seen, the RSS and T? using TDA, FDA and TFDA were able to detect all of OC
images within the larger BFs (2.0 x 1.5 cm and 2.0 % 1.0 cm), while in the detection of the
smaller BFs sizes (1.5 x 0.3 cm, 1.0 x 0.3 cm and 0.5 % 0.3 cm), there were almost 1 + 1
(from the 100 times randomly partition of data sets) of these OC images incorrectly classified.
Additionally, these optimized models did not correctly classify at least 3 + 1 control images
in all approaches (Table 8). This result can be attributed to the natural variability of poultry
meat and their respective images (Garrido-Novell et al., 2018). The inherent variability such
as compositional variations (lean meat and fat components) and intricate structural
arrangement (tendons and connective tissues of poultry samples) could contribute to increase
variability in control USIs (Farifias et al., 2021). As already explained, the use of TFDA-RSS
did not improve the goodness of classification metrics compared to TDA-RSS and FDA-RSS
but also reduced the LVs (Table 8). Thus, the use of TFDA-RSS and TDA-T?/FDA-T? could
be considered as the best options for practical industrial implementation in the quality
inspection of the presence of BF within poultry meat products.

Results obtained in the present work were similar to those obtained by Zhao et al. (2006) in
the detection of glass fragments within beverages packaged in glass containers by the
integration of CUS and Artificial Neural Networks (ANN). These authors considered a
training (n = 60 signals) and validation (n = 20 signals) datasets, to develop a detection of
glass fragment based CUS-ANN. They obtained a successful classification rate (Acc) of 95%
and claimed that the combination of CUS and ML proved to be feasible for non-invasive and
real-time quality inspection of foodstuffs. Nonetheless, the differential aspect of this work
lies in the capability of our ultrasonic system to inspect the entire product, rather than being
confined to single-point measurements for detecting FBs, further, the use of a high number
of experimental images for the calibration and external validation of mathematical models.
This capability provides a significant advantage in analyzing the presence of FBs, regardless
of their location within food products.

51



Table 13. Classification performance of the Residual Sum Squares (RSS) and Hotelling’s T-
squared (T?) multivariate control statistics in the detection of varying-size bone fragments
using the time-domain (TDA), frequency-domain (FDA) and time-frequency domain

(TFDA) approaches.
TDA Number of samples (predicted)
Type Number of samples (real) RSS T?
2.0x1.5 cm 15 15 15
2.0x1.0 cm 17 17 17
1.5%x0.3 cm 17 16 16
1.0x0.3 cm 15 14 14
0.5x0.3 cm 17 15 15
oC . TP=78+1 TP=78+1
(all types) FN=3=+1 FN=3+1
Control ’1 TN=77+2 TN=77+2
(CcaH CEV) FP=4+2 FP=4+2
Ceal 73 TNea= 71 TNea =71
CEV 8 TNIV =6 TNIV =6
FDA Number of samples (predicted)
Type Number of samples (real) RSS T?
2.0x1.5 cm 15 15 15
2.0x1.0 cm 17 17 17
1.5%x0.3 cm 17 17 16
1.0x0.3 cm 15 14 14
0.5x0.3 cm 17 15 15
oC 81 TP=78+1 TP=77+1
(all types) FN=3=+1 FN=4+1
Control ’1 TN=78+2 TN=77+2
(CcaH CEV) FP=3+2 FP=4+2
Ceal 73 TNear = 72 TNea =71
CEV 8 TNIV =6 TNIV =6
TFDA Number of samples (predicted)
Type Number of samples (real) RSS T?
2.0x1.5 cm 15 15 15
2.0x1.0 cm 17 17 17
1.5%0.3 cm 17 16 15
1.0x0.3 cm 15 14 14
0.5x0.3 cm 17 16 15
oC 81 TP=78+1 TP=76+2
(all types) FN=3=+1 FN=5+2
Control ’1 TN=78+1 TN=78+2
(CcaH CEV) FP=3=+1 FP=3+2
Ceal 73 TNear = 72 TNear = 72
CEV 8 TNIV =6 TNIV =6

TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency domain approach),
RSS (Residual Sum Squares), T? (Hotelling’s T-squared), OC (out-of-control), Ccal (control images for PCA
calibration), CEV (control images for PCA external validation), TP (true positive), TN (true negative), TNcal
(true negative for calibration images), TNIV (true negative for external validation images), FP (false positive)
and FN (false negative). Results are expressed as mean + standard error.
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3.2.1 Influence of training and validation dataset size on the BF detection using the
latent-based statistical process control approach

The statistical results for the detection of BFs by using both RSS and T? which considered
the TDA, FDA and TFDA approaches and four different ratios of datasets (100%, 75%, 50%
and 25%) alongside with statistical comparison using an ANOV A model, are depicted in Fig.
12.

EERSS EET?
TDA FDA
(A) (i) AV)

Acc (%)
Acu %)

Acc (%)

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%
Sample ratio Sample ratio Sample ratio

Fig. 12. Average A.. performance of RSS and T? control statistics used for detection of bone
fragments in chicken breast using different number of ultrasound images. Results for TDA
(A), FDA (B) and TFDA (C). TDA (time-domain approach), FDA (frequency-domain
approach), TFDA (time-frequency domain approach), A (overall accuracy), RSS (Residual
Sum Squares) and T? (Hotelling’s T-squared).

As can be observed (Fig. 12) the higher the number of ultrasound images in the analysis, the
better performance (progressively and statistically significant increase of Acc, ranging
between 80% to 96%) of both statistics for all the approaches. The increase in the number of
ultrasound images led the model become more robust with more images for model calibration
(Hu et al., 2018). Thus, as can be seen for the RSS, which has provided the best classification
results in all of approaches, the difference between considering the entire batch of samples or
75% of the total samples, is statistically (p<0.05) lower (< 4% for TDA and < 3% for FDA
and TFDA, respectively, Figs. 12A, 12B and 12C). Furthermore, the use of T also provided
great detection results in all approaches. However, the statistical results were better by using
RSS than T? with lower number of LVs. This fact (RSS behavior) indicates that the typical
plateau value that appears when plotting Acc vs the number of samples (Hu et al., 2018) is
already being reached. This behavior (Fig. 12A, 12B and 12C), in addition to the high value
in the percentage of correctly classified samples (>95%), indicates that the number of samples
tested in the present study (162) suffices for the selected approach (TDA, FDA and or TFDA)
and RSS multivariate control statistic.
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3.3 BF detection using USI and latent-based machine learning classifiers

The second part of this work was focused to assessing the performance of the supervised
Latent Variable-based Machine Learning (LV-ML) strategies, with and without the RF-based
variable selection stage (RF-VS-LV-ML), for the detection of BF in chicken breast samples.
These models included the use of Latent Variable-Support Vector Machine (LV-SVM),
Latent Variable-Random Forest (LV-RF), Latent Variable-Naive Bayes (LV-NB), Latent
Variable-Linear Discriminant Analysis (LV-LDA), Latent Variable-Quadratic Discriminant
Analysis (LV-QDA), Latent Variable-Generalized Linear Model (LV-GLM), Random
Forest-Variable Selection-Latent Variable-Support Vector Machine (RF-VS-LV-SVM),
Random Forest-Variable Selection-Latent Variable-Random Forest (RF-VS-LV-RF),
Random Forest-Variable Selection-Latent Variable-Naive Bayes (RF-VS-LV-NB), Random
Forest-Variable Selection-Latent Variable-Linear Discriminant Analysis (RF-VS-LV-LDA),
Random Forest-Variable Selection-Latent Variable-Quadratic Discriminant Analysis (RF-
VS-LV-QDA) and Random Forest-Variable Selection-Latent Variable-Generalized Linear
Model (RF-VS-LV-GLM).

In contrast to the unsupervised MIA approach, these methods aimed to leverage the extracted
latent eigenspace in combination with different classification ML techniques to enhance
classification performance of chicken breast samples with and without BF. Particular
emphasis was placed on assessing how the choice of hyperparameter configurations and the
inclusion of variable selection affected model robustness and predictive accuracy. To provide
a comprehensive view of model behavior, the performance metrics were systematically
analyzed and reported separately for the training (75%) and validation (25%) datasets,
allowing for a direct comparison of fitting ability and generalization power. Accordingly, the
following section presents the statistical results obtained with the LV-ML and RF-VS-LV-
ML models, highlighting the main differences in accuracy, computational time, and
complementary figures of merit.

The statistical results of the LV-ML and RF-VS-LV-ML models in the detection of BF within
chicken breast samples (section 2.7.2, considering the 100% of experimental dataset, 81
control and 81 OC images, since it was the best data size defined in section 3.2.1) exhibited
significant differences in the goodness of fit metrics depending on the hyperparameters
configurations belonging to each ML model and the NVLs used in modeling procedure (Fig.
13-36). Figs. 13 to 36 illustrate together the average values of Acc (%) and CT (s) of LV-ML
and RF-VS-LV-ML for both training and validation datasets, while the remaining figures of
merit (Set, Sev, Spt, Spv, Pr1, Prv, Ret, Rev, Fs1, Fsv, AUCRrocT, AUCROCYV, MCCT and MCCy)
alongside with their variability are compiled in “Supplementary material” (section 9).
Additionally, the variability associated with the Acct (75% for training) and Accv (25% for
validation) are also presented as supplementary material.

The statistical results were depicted in average values since the huge number of runs,

combination between techniques, data approaches, hyperparameters, NLVs and goodness of
fit metric tested from DoE (section 2.7.2; Tables 1-5) did not facilitate the data representation.
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Thus, in order to improve the data visualization, the A.c and CT were selected as main figures
of merit metrics of all evaluated LV-ML and RF-VS-LV-ML models.

As previously stated in “Material and Methods” section, the task of exploring different data-
driven modeling strategies to address the challenge of detecting BF in the poultry meat
industry is of critical importance. Thereby, the use of LV-ML and RF-VS-LV-ML aimed to
assess whether detection performance based on the MIA-PCA strategy could be improved
through ML techniques. For this reason and to facilitate the analysis of how ML influenced
the classification performance of contaminated/uncontaminated chicken breast samples, all
figures summarizing the Acc results included a line/grid reference to compare the statistical
results of MIA-MSPC (Tables 10-12 and Fig. 11) with those obtained from LV-ML and RF-
VS-LV-ML approaches. The first red line/grid colored was include to represent the maximum
Acc results using the MIA-MSPC-RSS-TFDA (Table 12). Furthermore, an additional green
line/grid colored was included in all figures as a reference of Acc = 99% with the aim to
rapidly identify if any of LV-ML and RF-VS-LV-ML models exceeded the Acc = 96.07%
(Table 12) and reached values of 96.07% < Acc < 99% and/or Acc > 99%.

As a general trend, the statistical results of A in all LV-SVM, LV-RF, LV-NB, LV-LDA,
LV-QDA, LV-GLM, RF-VS-LV-SVM, RF-VS-LV-RF, RF-VS-LV-NB, RF-VS-LV-LDA,
RF-VS-LV-QDA and RF-VS-LV-GLM models employing different hyperparameter
configurations and NLVs and using the different data approaches such as TDA, FDA, TFDA,
TFDABH and TFDABS showed a significant drop between training and validation datasets.

In the case of LV-SVM, the statistical classification performance as a function of the five
data approaches tested (Figs. 13 to 17) revealed both consistent patterns and important
differences related to KFs SVM’s hyperparameter, and the NLVs. A pronounced differences
in Acc between training and validation was observed, particularly with non-linear KFs such
as rbfdot, laplacedot, polydot, vanilladot, and besseldot, regardless of whether the
representation was time domain (TDA; Fig. 1S), frequency domain (FDA; Fig. 2S), time-
frequency domain (TFDA; Fig. 3S), and/or block-scaled time-frequency domain (TFDABH;
Fig. 4S and TFDABS; Fig. 5S). This indicates that non-linear mappings capture complex
structures in training data but often fail to generalize, especially at high NLVs. Overfitting
also depended on the SVM configuration. For instance, using the same KF, C-svc and nu-svc
frequently displayed different Acc trends, showing that the each model configuration classify
both control and OC images with difference A as a function of the NVLs used.
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Fig. 13. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-domain approach (TDA), shown as a function of the SVM
hyperparameters and the number of latent variables (NLVs) tested. Results of overall
accuracy (Acc) obtained with the “anovadot” kernel function are reported separately for the
training (75%) and the validation (25%) datasets.

Increasing NLVs generally improved model performance, with A frequently exceeding 96%
in both training and validation under TDA, FDA, TFDA, and TFDABH. However, in
TFDABS, performance decrease severely using KF-besseldot, training Acc remained below
60% and validation A did not increase, even with large NLVs. This result reflects that this
SVM combination of hyperparameters was not compatible, as a result a low goodness of fit
was evidenced. Respect to the influence of SVM’s C parameter, it was not significantly.
Varying in C values between 100 and 1000 did not alter Acc trends, indicating that LV
preprocessing stabilized the optimization problem, thereby reducing the influence of margin
regularization. Among KF, anovadot showed the most robust behavior (Fig. 13A and 13B to
15A and 15B). In TDA, FDA, and TFDA, it yielded high training and validation A for both
C-svc and nu-svc, with narrow train/validation gaps. This suggests that anovadot effectively
exploits orthogonal latent projections by modeling additive and interaction effects while
avoiding the severe overfitting observed with other non-linear kernels. Both C-svc and nu-
svc exhibited similar performance, with nu-svc showing slightly smoother validation trends
at larger NLVs.
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Fig. 14. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the frequency-domain approach (FDA), shown as a function of the SVM
hyperparameters and the number of latent variables (NLVs) tested. Results of overall
accuracy (Acc) obtained with the “anovadot” kernel function are reported separately for the
training (75%) and the validation (25%) datasets.
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Fig. 15. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-frequency-domain approach (TFDA), shown as a function of the
SVM hyperparameters and the number of latent variables (NLVs) tested. Results of overall
accuracy (Acc) obtained with the “anovadot” kernel function are reported separately for the
training (75%) and the validation (25%) datasets.
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Fig. 16. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-frequency-domain approach-block-scale hard (TFDABH), shown
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested.
Results of overall accuracy (Acc) obtained with the “anovadot” kernel function are reported
separately for the training (75%) and the validation (25%) datasets.
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Fig. 17. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-frequency-domain approach-block-scale soft (TFDABS), shown
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested.
Results of overall accuracy (Acc) obtained with the “anovadot” kernel function are reported
separately for the training (75%) and the validation (25%) datasets.

The analysis of CT in Figs. 18 to 22 characterizes the behavior of the LV-SVM framework
under different hyperparameter and NVLs assessed. CT was measured during training sing
75% of the dataset, with variations determined by KF, Type (C-svc vs. nu-svc), the C
parameter and the NLVs considered during model tuning. The figures quantify both the
computational cost imposed by SVM hyperparameters and the additional cost introduced by
increasing model dimensionality through larger NLVs.
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Fig. 18. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM)
using the time-domain approach (TDA), shown as a function of the SVM hyperparameters
and the number of latent variables (NLVs) tested. Results of CT are presented for the training
(75%) dataset.
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Fig. 19. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM)
using the frequency-domain approach (FDA), shown as a function of the SVM
hyperparameters and the number of latent variables (NLVs) tested. Results of CT are
presented for the training (75%) dataset.

Regarding to the TDA (Fig. 18), a clear trend was observed. Linear and polynomial functions
(vanilladot, polydot) consistently show the lowest CT, while more complex kernels (anovadot
and besseldot) are markedly more expensive, with rbfdot and laplacedot occupying an
intermediate position. Increasing C from 100 to 1000 only modestly increases CT, indicating
that solver convergence was only mildly sensitive to tighter margin constraints in this domain.
Differences between C-svc and nu-svc remain small overall, with nu-svc tending to be
slightly slower under non-linear kernels at high C values.

Considering the FDA (Fig. 19), the relative kernel ordering persists, but absolute CTs for the
simpler kernels are generally lower than in TDA. This suggests that frequency representations
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compact relevant information, thereby reducing the effective per-component computational
load. In FDA, CT grows more gently with NLVs, especially for vanilladot and polydot,
whereas non-linear kernels still show steep scaling with dimensionality. The role of C and
SVM type remains secondary, except under the heaviest kernels. In practical terms, FDA
achieves a favorable computational profile for low-to-moderate NLVs but does not alleviate
the cost of highly non-linear kernels.

The results of CT using the TFDA (Fig. 20) raises the computational demand more
substantially. By concatenating time and frequency features, the dimensionality increases,
shifting CT upward across all kernels. The relative differences between kernels become more
pronounced: while vanilladot and polydot remain relatively efficient, rbfdot, laplacedot, and
especially anovadot and besseldot exhibit steep increases in CT as NLVs grow. Although the
effect of C remains moderate, high values exacerbate training times when combined with
non-linear kernels. Once again, the CT-NLVs relationship is nearly linear, but with a steeper
slope than in TDA and FDA due to the higher effective dimensionality of TFDA
representations. Additionally, by using TFDABH (Fig. 21) the CT represents the most
computationally demanding scenario. The hard block-scale of TFDA introduced
heterogeneous features that dramatically inflate kernel evaluations. As a result, CT is
substantially higher than in all previous representations, particularly for anovadot and
besseldot. The effect of C parameter becomes non-negligible in this setting, amplifying
runtimes significantly when large margins are enforced. Similarly, nu-svc tends to incur
additional overhead under these demanding conditions. Most critically, the slope of CT
versus NLVs is steepest in TFDABH: each additional latent variable imposes a
disproportionately large computational resources, reflecting the compounded cost of block-
scale interactions in high dimensions.

By contrast, the TFDABS (Fig. 22) provides a more balanced profile. Although CT remains
higher than in TFDA, it is consistently lower than in TFDABH. The KF ranking remains the
same, but the escalation of CT with NLVs is considerably more moderate than in the hard
variant. Similarly, the influence of C and SVM type on runtime is less dramatic, returning to
a pattern closer to TFDA. This indicates that soft scaling mitigates some of the inefficiencies
introduced by hard block partitioning, allowing richer feature representations without
incurring prohibitive computational costs. Thereby, the statistical CT results revealed that the
changes in training time were primarily influenced by kernel choice and the number of latent
variables, while C plays an amplifying but secondary role, and SVM type contributes only
marginal differences except in extreme conditions. Across representations, a clear runtime
ordering can be established: FDA is typically the most efficient, followed by TDA, then
TFDA, with TFDABS moderately heavier and TFDABH the most computationally
expensive.
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Flg 20. Computat10nal time (CT) of the Latent Variable- Support Vector Machlne (LV-SVM)
using the time-frequency-domain approach (TFDA), shown as a function of the SVM
hyperparameters and the number of latent variables (NLVs) tested. Results of CT are
presented for the training (75%) dataset.
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Flg 21. Computat10nal time (CT) of the Latent Variable- Support Vector Machlne (LV-SVM)
using the time-frequency-domain approach-block-scale hard (TFDABH), shown as a
function of the SVM hyperparameters and the number of latent variables (NLVs) tested.
Results of CT are presented for the training (75%) dataset.
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Fig. 22. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM)
using the time-frequency-domain approach-block-scale soft (TFDABS), shown as a function
of the SVM hyperparameters and the number of latent variables (NLVs) tested. Results of
CT are presented for the training (75%) dataset.
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Regarding the statistical results of the other LV-ML models. Considering the TDA (Fig. 23),
the performance of LV-RF, LV-NB, LV-LDA, LV-QDA, and LV-GLM exhibits pronounced
sensitivity to both the NLVs and hyperparameter tuning. In this setting, training accuracies
consistently exceed those obtained on the validation set, indicating that model fitting is
strongly influenced by the dimensionality of the latent representation. This divergence, which
becomes more pronounced at higher NL Vs, reveals clear overfitting tendencies, particularly
in models such as LV-RF and LV-QDA, where decision boundaries adapt excessively to
training-specific characteristics. Simpler models, such as LV-NB and LV-GLM, yield more
stable but comparatively lower accuracies, reflecting their reduced flexibility in capturing the
intrinsic variability of TDA features.

Considering the FDA (Fig. 24), the dependence on NLVs and hyperparameters remains
evident, but notable distinctions emerge. Models such as LV-RF and LV-LDA achieve
improved generalization compared with their time-domain counterparts, suggesting that
spectral features encode discriminative structure more effectively. Validation accuracies
under FDA are, in several configurations, closer to training values, especially at intermediate
NLVs, thereby narrowing the gap observed in TDA. This improvement suggests that
frequency-domain features act as a form of natural regularization, filtering redundant or noisy
components inherent in raw temporal signals. Nonetheless, the persistence of measurable
discrepancies between training and validation accuracies across all models indicates that
overfitting risks are not fully mitigated by the transition from temporal to spectral
representations.

Using the TFDA (Fig. 25) data approach, most models achieve higher accuracies than under
TDA or FDA, confirming the advantage of leveraging complementary information domains.
For instance, LV-RF consistently attains superior training performance, whereas LV-LDA
and LV-GLM exhibit notable gains in validation accuracy, underscoring the utility of hybrid
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features for both flexible and linear models. However, the training/validation gap remains a
dominant trend. Models with high representational capacity, such as LV-RF and LV-QDA,
are particularly prone to overfitting, while simpler models display less variance but lower
peak accuracies. This trade-off highlights the challenge of balancing feature richness with
model robustness.
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Fig. 23. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naive Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent
Variable-Generalized Linear Model (LV-GLM) using the time-domain approach (TDA),
shown as a function of the ML hyperparameters and the number of latent variables (NLVs)
tested. Results of overall accuracy (Acc) are reported separately for the training (75%) and
the validation (25%) datasets.

The imposition of block-scale constraints in the TFDA domain adds another dimension to the
analysis. Under the TFDABH (Fig. 26), training accuracies for several models, especially
LV-RF and LV-QDA, increase sharply, reflecting the adaptability of these classifiers to
highly localized time-frequency structures. However, validation performance does not
consistently follow this trend, and in many cases the training—validation gap widens
substantially. This outcome underscores the risk that overly rigid block constraints, while
effective in capturing local dependencies, may exacerbate overfitting in the absence of
suitable regularization. Conversely, the TFDABS (Fig. 27) yields a more favorable balance
between training and validation performance. Here, the gains in training accuracy are more
moderate than under TFDABH, but validation accuracies are generally higher and more
stable across NLVs. This suggests that the TFDABS design provides a more flexible
mechanism for integrating local time-frequency dependencies without enforcing rigid
structural constraints. As a result, models trained under TFDABS exhibit stronger
generalization capability, positioning this formulation as a potentially more robust strategy
for real-world scenarios where unseen variability must be accommodated.
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Beyond classification accuracy, the assessment of CT (Fig. 28) constitutes a critical
dimension of model feasibility. The results reveal a clear trade-off between predictive
performance and computational efficiency. Frameworks incorporating enriched
representations, such as TFDA, TFDABH, and TFDABS, consistently demand longer CTs
compared with TDA and FDA. This computational cost was especially pronounced for
complex models such as LV-RF, where both training and inference phases are
computationally intensive. By contrast, simpler models like LV-NB and LV-GLM maintain
relatively low computational demands across all approaches, albeit at the cost of reduced
accuracy. This trade-off emphasizes the practical consideration that while enriched feature
domains can maximize predictive performance, their elevated computational cost may
constrain applicability in real-time or resource-limited contexts. Simpler TDA or FDA
strategies, though less powerful in absolute accuracy, remain viable alternatives when
efficiency is prioritized.

These results demonstrate that model performance was jointly conditioned by feature-domain
representation, classifier complexity, and the NLVs. The persistent training/validation
discrepancy in Acc across all approaches highlights the central role of regularization and
model selection strategies in mitigating overfitting. Furthermore, the computational analysis
shows that the most accurate approaches are not necessarily the most practical, reinforcing
the importance of balancing predictive reliability with computational efficiency in
application-specific settings.
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Fig. 24. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naive Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent
Variable-Generalized Linear Model (LV-GLM) using the frequency-domain approach
(FDA), shown as a function of the ML hyperparameters and the number of latent variables
(NLVs) tested. Results of overall accuracy (Acc) are reported separately for the training (75%)
and the validation (25%) datasets.
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Fig. 25. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naive Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent
Variable-Generalized Linear Model (LV-GLM) using the time-frequency-domain approach
(TFDA), shown as a function of the ML hyperparameters and the number of latent variables
(NLVs) tested. Results of overall accuracy (Acc) are reported separately for the training (75%)
and the validation (25%) datasets.
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Fig. 26. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naive Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent
Variable-Generalized Linear Model (LV-GLM) using the time-frequency-domain approach-
block-scale hard (TFDABH), shown as a function of the ML hyperparameters and the number
of latent variables (NLVs) tested. Results of overall accuracy (Acc) are reported separately
for the training (75%) and the validation (25%) datasets.

65



DTe (Training)

DTe (Validation)
RF-NTs=50 (Training)
RF-NTs=50 (Validation)

Fig. 27. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naive Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent
Variable-Generalized Linear Model (LV-GLM) using the time-frequency-domain approach-
block-scale soft (TFDABS), shown as a function of the ML hyperparameters and the number
of latent variables (NLVs) tested. Results of overall accuracy (Acc) are reported separately
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for the training (75%) and the validation (25%) datasets.
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Fig. 28. Computational time (CT) of the Latent Variable-Random Forest (LV-RF), Latent
Variable-Naive Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis (LV-LDA),
Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent Variable-
Generalized Linear Model (LV-GLM) using the time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale
soft (TFDABS), shown as a function of the ML hyperparameters and the number of latent
variables (NLVs) tested. Results of CT are reported for the training (75%) dataset.

The assessment of RF-VS-LV-SVM models under the TDA (Fig. 29) highlights the
sensitivity of classification Acc to the choice of kernel function, SVM type, and the
regularization parameter. Training accuracies tend to remain consistently higher than
validation accuracies, a pattern that becomes accentuated for larger values of the
regularization parameter (C = 1000). Kernels such as rbfdot and laplacedot generally provide
superior training performance, whereas validation performance is more stable for polydot and
vanilladot. The differences between training and validation results suggests that highly
flexible kernels, while effective in optimizing the decision boundary during training, increase
the risk of overfitting. In terms of CT, training with more complex kernels, such as anovadot
and besseldot, requires significantly longer runtimes, indicating that kernel choice directly
impacts computational feasibility.
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When the same model is applied considering the FDA (Fig. 30), the overall performance
patterns remain consistent, but the validation accuracies improve relative to TDA. This
improvement indicates that spectral representations enhance the discriminative structure of
the data, particularly when combined with regularization. For example, the rbfdot kernel
achieves balanced results with reduced gaps between training and validation accuracies,
especially for intermediate C values (C = 500.5). However, the CT under FDA is generally
higher than in TDA, reflecting the added complexity of frequency-domain feature extraction.
The improvement in generalization combined with the computational penalty emphasizes the
importance of balancing accuracy gains with processing cost.

The integration of temporal and spectral features through the TFDA (Fig. 31) further
amplifies these observations. The highest training accuracies are consistently achieved under
this configuration, particularly for rbfdot and laplacedot KF. Validation accuracies also
improve compared with both TDA and FDA, indicating that joint time-frequency
representations provide richer discriminatory information. Nevertheless, the gap between
training and validation remains significant in models using high-capacity kernels, especially
under the C-svc type with large regularization constants. CT reach their maximum under
TFDA, confirming that while enriched representations boost predictive performance, they
impose a heavy computational load during training.

The introduction of block-scale constraints modifies these trend. By using the TFDABH (Fig.
32), training performance exhibits sharp increases across most KFs, but validation
performance does not scale proportionally, thereby widening the discrepancy. Kernels with
strong non-linear mapping capacity, such as rbfdot, display pronounced overfitting, while
simpler kernels maintain lower but more stable validation accuracies. Computational times
under TFDABH are consistently higher than in TFDA, highlighting the additional cost
introduced by block-scale partitioning. Conversely, in the TFDABS (Fig. 33) yields more
balanced outcomes. Training Acc values were slightly lower than under TFDABH, but
validation A.c are consistently higher and less variable across KF and C values. The reduced
gap between training and validation suggests that the soft-block constraint provides an
effective balance between model flexibility and generalization. Computational costs under
TFDABS remain elevated but are somewhat reduced compared with TFDABH, which
reinforces the potential of this approach as a more computationally efficient compromise.

A comparison with the RF-VS-LV-RF (Fig. 34) model reveals complementary trends. The
RF-based framework benefits less from kernel flexibility but is highly sensitive to the NTs
and DTe depth. Training Acc tend to saturate rapidly with increasing NTs, whereas validation
accuracies plateau at lower levels, highlighting the diminishing returns of increasing
ensemble size. Computational time rises nearly linearly with NTs, reflecting the inherent cost
of ensemble growth. Across all domain approaches, RF models are computationally heavier
than Naive Bayes or GLM counterparts but lighter than SVMs with complex KF.

The RF-VS-LV-NB (Fig. 35) model exhibits markedly different behavior. Performance is
less sensitive to hyperparameter tuning, with LS exerting only marginal influence on both
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training and validation A¢.. Compared with SVM and RF models, NB shows more modest
peak accuracies but narrower gaps between training and validation sets, suggesting reduced
overfitting. CT remain minimal across all approaches, establishing NB as a computationally
efficient though less competitive classifier in terms of absolute performance.

Finally, the performance of RF-VS-LV-LDA, RF-VS-LV-QDA, and RF-VS-LV-GLM (Fig.
36) underscores the influence of classifier complexity as a function of the different feature
data approaches tested. LDA and GLM deliver consistently low accuracies, with a small
difference in Acc between training and validation datasets, reflecting limited predictive
capability despite their robustness against overfitting. In contrast, QDA attains higher training
Acc but exhibits pronounced overfitting, particularly under TFDA and TFDABH, where
validation performance decreased sharply. Although these models achieve the shortest CT
(Figs. 36B, 36D, 36F, 36H and 36J), their limited classification power positions them as
suitable only for resource-constrained settings where efficiency is prioritized over accuracy.
The comparative analysis confirms that predictive performance was highly influenced by the
interaction between data approach, classifier complexity, and hyperparameter configuration
of these models.
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Fig. 29. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-domain
approach (TDA), shown as a function of the SVM hyperparameters. Results of overall
accuracy (Acc) are reported as a mean + standard deviation separately for the training (75%)
and the validation (25%) datasets. Furthermore, computational time (CT) is also presented a
mean + standard deviation for the training process. Kernel functions (rbfdot, polydot,
laplacedot, vanilladot, besseldot, and anovadot), SVM’ type (C-svc and nu-svc) and
regularization parameter (C; 100, 500.5, and 1000).
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Fig. 30. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the frequency-domain
approach (FDA), shown as a function of the SVM hyperparameters. Results of overall
accuracy (Acc) are reported as a mean + standard deviation separately for the training (75%)
and the validation (25%) datasets. Furthermore, computational time (CT) is also presented a
mean + standard deviation for the training process. Kernel functions (rbfdot, polydot,
laplacedot, vanilladot, besseldot, and anovadot), SVM’ type (C-svc and nu-svc) and

regularization parameter (C; 100, 500.5, and 1000).
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Fig. 31. Statistical clasmﬁcatlon performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-frequency-
domain approach (TFDA), shown as a function of the SVM hyperparameters. Results of
overall accuracy (Acc) are reported as a mean + standard deviation separately for the training
(75%) and the validation (25%) datasets. Furthermore, computational time (CT) is also
presented a mean + standard deviation for the training process. Kernel functions (rbfdot,
polydot, laplacedot, vanilladot, besseldot, and anovadot), SVM’ type (C-svc and nu-svc) and

regularization parameter (C; 100, 500.5, and 1000).
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Fig. 32. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-frequency-
domain approach-block-scale hard (TFDABH), shown as a function of the SVM
hyperparameters. Results of overall accuracy (Acc) are reported as a mean + standard
deviation separately for the training (75%) and the validation (25%) datasets. Furthermore,
computational time (CT) is also presented a mean + standard deviation for the training
process. Kernel functions (rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot),
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SVM’ type (C-svc and nu-svc) and regularization parameter (C; 100, 500.5, and 1000).
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Fig. 33. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-frequency-
domain approach-block-scale soft (TFDABS), shown as a function of the SVM
hyperparameters. Results of overall accuracy (Acc) are reported as a mean + standard
deviation separately for the training (75%) and the validation (25%) datasets. Furthermore,
computational time (CT) is also presented a mean + standard deviation for the training
process. Kernel functions (rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot),
SVM’ type (C-svc and nu-svc) and regularization parameter (C; 100, 500.5, and 1000).
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Fig. 34. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Random Forest (RF-VS-LV-RF) using the time-domain approach (TDA),
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain
approach-block-scale soft (TFDABS), shown as a function of the RF hyperparameters.
Results of overall accuracy (Acc) are reported as a mean + standard deviation separately for
the training (75%) and the validation (25%) datasets. Additionally, computational time (CT)
is also presented a mean =+ standard deviation for the training process. DTe (decision tree),
NTs (number of trees).
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Fig. 35. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Naive Bayes (RF-VS-LV-NB) using the time-domain approach (TDA),
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain
approach-block-scale soft (TFDABS), shown as a function of the NB hyperparameters.
Results of overall accuracy (Acc) are reported as a mean + standard deviation separately for
the training (75%) and the validation (25%) datasets. Additionally, computational time (CT)
is also presented a mean + standard deviation for the training process. LS (Laplace
Smoothing).
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Fig. 36. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Linear Discriminant Analysis (RF-VS-LV-LDA), Random Forest-Variable
Selection-Latent Variable-Quadratic Discriminant Analysis (RF-VS-LV-QDA) and Random
Forest-Variable Selection-Latent Variable-Generalized Linear Model Analysis (RF-VS-LV-
GLM) using the time-domain approach (TDA), frequency-domain approach (FDA), time-
frequency-domain approach (TFDA), time-frequency-domain approach-block-scale hard
(TFDABH) and time-frequency-domain approach-block-scale soft (TFDABS). Results of
overall accuracy (Acc) are reported as a mean + standard deviation separately for the training
(75%) and the validation (25%) datasets. Additionally, computational time (CT) is also
presented a mean + standard deviation for the training process.

The application of PLSR modeling strategy provides an advanced framework to assess the
statistical classification performance of LV-ML and RF-VS-LV-ML models while
simultaneously accounting for hyperparameter configuration, NLVs, and domain-specific
data representations (TDA, FDA, TFDA, TFDABH and TFDABS). In the case of LV-SVM,
the PLSR model (Fig. 37) reveals that KF, SVM’s type (C-svc vs. nu-svc), and the C
parameters were among the most influential factors driving predictive performance accuracy.
Models employing non-linear KF such as rbfdot and laplacedot achieve higher Acct, but these
gains are often accompanied by wider discrepancies with Accv, suggesting model overfitting.
Performance indicators such as Se, Sy, Pr, Re, and Fs follow similar trends, with higher values
consistently observed in the training dataset compared with validation. The RMSETr and
RMSEcv, R? and Q? values confirmed that there was a slightly difference between model
fitting for training and cross-validation datasets. Variables with higher VIP scores include
TFDA, TFDABH, TFDABS, Type, all of KF and NVLs, highlighting the importance of these
variables in influence of the statistical performance of LV-SVM model. While variables such
as C and RS did not significantly influence the responses.
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When the screened PLSR model is considered (Fig. 38), where variables with VIP<0.5 (TDA,
FDA, C=100, C=500, C=1000 and RS) are removed, robustness is improved and spurious
correlations are reduced. The results show a more balanced relationship between training and
validation performance. This result indicated that variable screening enhances the stability of
the PLSR interpretation and reduces noise introduced by low-influence regressors.

The analysis of the LV-RF using the PLSR (Fig. 39) demonstrates a distinct dependency on
ensemble hyperparameters, specifically the NTs and DTe. Training accuracies approach
saturation rapidly as NTs increase, whereas validation accuracies plateau earlier,
emphasizing diminishing returns in ensemble expansion. The VIP analysis highlights NTs as
one of the most critical predictors, with large ensembles (NTs > 5000) leading to high training
fitting results but limited improvement in validation performance. Performance metrics such
as MCC and AUC reinforce this pattern, showing consistently higher training values
compared with validation. Removal of low-VIP regressors improves the interpretability of
the model but does not fully mitigate the overfitting tendency of large ensembles.

The PLSR modeling fitting on the LV-NB (Fig. 40) results provides a contrasting perspective.
In this model, the influence of hyperparameters was less pronounced, with LS contributing
only marginally to performance. The model yields moderate training accuracies but relatively
stable validation accuracies, with smaller gaps between R? and Q* compared with SVM or
RF. P, Re, and F; values were lower than in LV-SVM and LV-RF but balanced across training
and validation datasets, indicating limited overfitting. VIP analysis places greater weight on
the NVLs, suggesting that classification performance was highly dependent of the NVLs used
in the model training irrespective of the data approach used and the applications of LS.

In the case of LV-LDA (Fig. 41), PLSR results confirm the stability of this linear classifier.
Validation accuracies remain close to training values, and R? and Q? show smaller
discrepancies relative to more complex models. Although overall accuracy is lower than that
of LV-SVM or LV-RF, performance measures such as sensitivity and specificity are
consistent across training and validation, reflecting good generalization. Low RMSECV
values and modest RSS confirm the model’s robustness. Variables with higher VIP scores
include NLVs and data representation, again pointing to the feature extraction stage as the
most critical determinant of performance in LDA.

Conversely, the LV-QDA (Fig. 42) displays higher training accuracies but reduced
generalization capability. Discrepancies between R? and Q? are more pronounced than in
LDA, and RMSEcv values increase, indicating susceptibility to overfitting. Performance
indicators such as recall and F-score are elevated for training but drop considerably for
validation datasets. VIP analysis highlights the strong dependence on NLVs, which, when set
too high, introduce variance increases. The LV-GLM (Fig. 43) exhibits intermediate
behavior, with performance metrics indicating modest but reliable classification capacity. R?
and Q? values are generally aligned, and residual errors remain moderate. Se and P show less
fluctuation between training and validation compared with QDA, highlighting GLM as a
more stable alternative compared to LV-LDA and LV-QDA .
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When PLSR is applied to models incorporating RF-VS, additional patterns emerge. For RF-
VS-LV-SVM (Fig. 44), Type and KF continue to influence the statistical figures of merit of
models. The RF-VS-LV-RF (Fig. 45) shows similar trends, with ensemble hyperparameters
remaining critical, but with reduced overfitting compared with LV-RF, confirming that
variable screening moderates excessive variance introduced in the model.
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Fig. 37. Part1al Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Support Vector Machines (LV-SVM)
model considering simultaneously the data approach: time-domain approach (TDA),
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain
approach-block-scale soft (TFDABS), and the SVM’s hyperparameters and number of latent
variables (NLVs). NPLSR (computed number of PLSR components), R? (coefficient of
determination for training dataset), Q> (coefficient of determination for K-Fold cross
validation dataset), RMSETr (root mean square error for training dataset), RMSEcv (root
mean square error for K-Fold cross validation dataset), RSS (residual sum squares), T?
(Hotelling’s T-squared), VIP (variable Importance for the projection), KF (kernel functions;
rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot), type (C-svc and nu-svc), C
(regularization parameter; 100, 500.5, and 1000), Acct (overall accuracy for training dataset),
Accv (overall accuracy for validation dataset), Ser (sensibility for training dataset), Sev
(sensibility for validation dataset), Spr (specificity for training dataset), Spv (specificity for
validation dataset), P,r (precision for training dataset), Prv (precision for validation dataset),
Ret (recall for training dataset), Rev (recall for validation dataset), Fst (F-score for training
dataset), Fsv (F-score for validation dataset), AUCr (area under the Receiver Operating
Characteristic curve for training dataset), AUCt (area under the Receiver Operating
Characteristic curve for validation dataset), MCCr (Matthews correlation coefficient for
training dataset) and MCCy (Matthews correlation coefficient for validation dataset).
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Fig. 38. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Support Vector Machines (LV-SVM)
model considering simultaneously the data approach: time-domain approach (TDA),
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain
approach-block-scale soft (TFDABS), and the SVM’s hyperparameters and number of latent
variables (NLVs). Results of the PLSR model are presented for the screened model; regressor
variables with VIP values lower than 0.5 were removed to improve model robustness. NPLSR
(computed number of PLSR components), R? (coefficient of determination for training
dataset), Q? (coefficient of determination for K-Fold cross validation dataset), RMSEtr (root
mean square error for training dataset), RMSEcy (root mean square error for K-Fold cross
validation dataset), RSS (residual sum squares), T> (Hotelling’s T-squared), VIP (variable
Importance for the projection), KF (kernel functions; rbfdot, polydot, laplacedot, vanilladot,
besseldot, and anovadot), type (C-svc and nu-svc), C (regularization parameter; 100, 500.5,
and 1000), Acct (overall accuracy for training dataset), Accv (overall accuracy for validation
dataset), Ser (sensibility for training dataset), Sev (sensibility for validation dataset), Spr
(specificity for training dataset), Spv (specificity for validation dataset), Prr (precision for
training dataset), Prv (precision for validation dataset), Rer (recall for training dataset), Rev
(recall for validation dataset), Fst (F-score for training dataset), Fsv (F-score for validation
dataset), AUCr (area under the Receiver Operating Characteristic curve for training dataset),
AUCT (area under the Receiver Operating Characteristic curve for validation dataset), MCCr
(Matthews correlation coefficient for training dataset) and MCCy (Matthews correlation
coefficient for validation dataset).
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Fig. 39. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Random Forest (LV-RF) model
considering simultaneously the data approach: time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale
soft (TFDABS), and the RF’s hyperparameters and number of latent variables (NLVs).
Results of the PLSR model are presented for the screened model; regressor variables with
VIP values lower than 0.5 were removed to improve model robustness. NPLSR (computed
number of PLSR components), R? (coefficient of determination for training dataset), Q?
(coefficient of determination for K-Fold cross validation dataset), RMSErr (root mean square
error for training dataset), RMSEcy (root mean square error for K-Fold cross validation
dataset), RSS (residual sum squares), T? (Hotelling’s T-squared), VIP (variable Importance
for the projection), DTe (decision tree), NTs (number of trees; 50, 500 1000 5000 10000),
Acct (overall accuracy for training dataset), Accv (overall accuracy for validation dataset), Ser
(sensibility for training dataset), Sev (sensibility for validation dataset), Syt (specificity for
training dataset), Spv (specificity for validation dataset), Pit (precision for training dataset),
Pv (precision for validation dataset), Rer (recall for training dataset), Rev (recall for
validation dataset), Fst (F-score for training dataset), Fsv (F-score for validation dataset),
AUCT (area under the Receiver Operating Characteristic curve for training dataset), AUCr
(area under the Receiver Operating Characteristic curve for validation dataset), MCCr
(Matthews correlation coefficient for training dataset) and MCCy (Matthews correlation
coefficient for validation dataset).
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Fig. 40. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Naive Bayes (LV-NB) model
considering simultaneously the data approach: time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale
soft (TFDABS), and the NB’s hyperparameters and number of latent variables (NLVs).
Results of the PLSR model are presented for the screened model; regressor variables with
VIP values lower than 0.5 were removed to improve model robustness. NPLSR (computed
number of PLSR components), R? (coefficient of determination for training dataset), Q?
(coefficient of determination for K-Fold cross validation dataset), RMSErr (root mean square
error for training dataset), RMSEcy (root mean square error for K-Fold cross validation
dataset), RSS (residual sum squares), T? (Hotelling’s T-squared), VIP (variable Importance
for the projection), Accv (overall accuracy for validation dataset), Set (sensibility for training
dataset), Sev (sensibility for validation dataset), Syt (specificity for training dataset), Spv
(specificity for validation dataset), P (precision for training dataset), Prv (precision for
validation dataset), Rer (recall for training dataset), Rev (recall for validation dataset), Fst (F-
score for training dataset), Fsv (F-score for validation dataset), AUCr (area under the Receiver
Operating Characteristic curve for training dataset), AUCrt (area under the Receiver
Operating Characteristic curve for validation dataset), MCCt (Matthews correlation
coefficient for training dataset) and MCCy (Matthews correlation coefficient for validation
dataset).
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Fig. 41. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Linear Discriminant Analysis (LV-
LDA) model considering simultaneously the data approach: time-domain approach (TDA),
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain
approach-block-scale soft (TFDABS), and number of latent variables (NLVs). Results of the
PLSR model are presented for the screened model; regressor variables with VIP values lower
than 0.5 were removed to improve model robustness. NPLSR (computed number of PLSR
components), R? (coefficient of determination for training dataset), Q> (coefficient of
determination for K-Fold cross validation dataset), RMSETr (root mean square error for
training dataset), RMSEcv (root mean square error for K-Fold cross validation dataset), RSS
(residual sum squares), T?> (Hotelling’s T-squared), VIP (variable Importance for the
projection), Accv (overall accuracy for validation dataset), Set (sensibility for training dataset),
Sev (sensibility for validation dataset), Spr (specificity for training dataset), Spv (specificity
for validation dataset), P;r (precision for training dataset), Prv (precision for validation
dataset), Ret (recall for training dataset), Rev (recall for validation dataset), Fst (F-score for
training dataset), Fsv (F-score for validation dataset), AUCt (area under the Receiver
Operating Characteristic curve for training dataset), AUCrt (area under the Receiver
Operating Characteristic curve for validation dataset), MCCt (Matthews correlation
coefficient for training dataset) and MCCy (Matthews correlation coefficient for validation
dataset).
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Fig. 42. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Quadratic Discriminant Analysis (LV-
QDA) model considering simultaneously the data approach: time-domain approach (TDA),
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain
approach-block-scale soft (TFDABS), and number of latent variables (NLVs). Results of the
PLSR model are presented for the screened model; regressor variables with VIP values lower
than 0.5 were removed to improve model robustness. NPLSR (computed number of PLSR
components), R? (coefficient of determination for training dataset), Q> (coefficient of
determination for K-Fold cross validation dataset), RMSETr (root mean square error for
training dataset), RMSEcv (root mean square error for K-Fold cross validation dataset), RSS
(residual sum squares), T?> (Hotelling’s T-squared), VIP (variable Importance for the
projection), Accv (overall accuracy for validation dataset), Set (sensibility for training dataset),
Sev (sensibility for validation dataset), Spr (specificity for training dataset), Spv (specificity
for validation dataset), P;r (precision for training dataset), Prv (precision for validation
dataset), Ret (recall for training dataset), Rev (recall for validation dataset), Fst (F-score for
training dataset), Fsv (F-score for validation dataset), AUCt (area under the Receiver
Operating Characteristic curve for training dataset), AUCrt (area under the Receiver
Operating Characteristic curve for validation dataset), MCCt (Matthews correlation
coefficient for training dataset) and MCCy (Matthews correlation coefficient for validation
dataset).
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Fig. 43. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Latent Variable-Generalized Linear Model (LV-GLM)
considering simultaneously the data approach: time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale
soft (TFDABS), and number of latent variables (NLVs). Results of the PLSR model are
presented for the screened model; regressor variables with VIP values lower than 0.5 were
removed to improve model robustness. NPLSR (computed number of PLSR components),
R? (coefficient of determination for training dataset), Q* (coefficient of determination for K-
Fold cross validation dataset), RMSErr (root mean square error for training dataset),
RMSEcv (root mean square error for K-Fold cross validation dataset), RSS (residual sum
squares), T?> (Hotelling’s T-squared), VIP (variable Importance for the projection), Accv
(overall accuracy for validation dataset), Ser (sensibility for training dataset), Sev (sensibility
for validation dataset), Syt (specificity for training dataset), Spv (specificity for validation
dataset), Pt (precision for training dataset), Prv (precision for validation dataset), Rer (recall
for training dataset), Rev (recall for validation dataset), Fsr (F-score for training dataset), Fsv
(F-score for validation dataset), AUCr (area under the Receiver Operating Characteristic
curve for training dataset), AUCr (area under the Receiver Operating Characteristic curve for
validation dataset), MCCrt (Matthews correlation coefficient for training dataset) and MCCy
(Matthews correlation coefficient for validation dataset).
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Fig. 44. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Random Forest-Variable Selection-Latent Variable-
Support Vector Machines (RF-VS-LV-SVM) model considering simultaneously the data
approach: time-domain approach (TDA), frequency-domain approach (FDA), time-
frequency-domain approach (TFDA), time-frequency-domain approach-block-scale hard
(TFDABH) and time-frequency-domain approach-block-scale soft (TFDABS) and the
SVM’s hyperparameters. Results of the PLSR model are presented for the screened model;
regressor variables with VIP values lower than 0.5 were removed to improve model
robustness. NPLSR (computed number of PLSR components), R? (coefficient of
determination for training dataset), Q> (coefficient of determination for K-Fold cross
validation dataset), RMSETr (root mean square error for training dataset), RMSEcy (root
mean square error for K-Fold cross validation dataset), RSS (residual sum squares), T?
(Hotelling’s T-squared), VIP (variable Importance for the projection), KF (kernel functions;
rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot), type (C-svc and nu-svc), C
(regularization parameter; 100, 500.5, and 1000), Acct (overall accuracy for training dataset),
Acev (overall accuracy for validation dataset), Ser (sensibility for training dataset), Sev
(sensibility for validation dataset), Spr (specificity for training dataset), Spv (specificity for
validation dataset), Pt (precision for training dataset), Prv (precision for validation dataset),
Ret (recall for training dataset), Rev (recall for validation dataset), Fst (F-score for training
dataset), Fsv (F-score for validation dataset), AUCt (area under the Receiver Operating
Characteristic curve for training dataset), AUCt (area under the Receiver Operating
Characteristic curve for validation dataset), MCCr (Matthews correlation coefficient for
training dataset) and MCCy (Matthews correlation coefficient for validation dataset).
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Fig. 45. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of Random Forest-Variable Selection-Latent Variable-
Random Forest (RF-VS-LV-RF) model considering simultaneously the data approach: time-
domain approach (TDA), frequency-domain approach (FDA), time-frequency-domain
approach (TFDA), time-frequency-domain approach-block-scale hard (TFDABH) and time-
frequency-domain approach-block-scale soft (TFDABS) and the RF’s hyperparameters.
Results of the PLSR model are presented for the screened model; regressor variables with
VIP values lower than 0.5 were removed to improve model robustness. NPLSR (computed
number of PLSR components), R? (coefficient of determination for training dataset), Q?
(coefficient of determination for K-Fold cross validation dataset), RMSErr (root mean square
error for training dataset), RMSEcy (root mean square error for K-Fold cross validation
dataset), RSS (residual sum squares), T? (Hotelling’s T-squared), VIP (variable Importance
for the projection), DTe (decision tree), NTs (number of trees; 50, 500, 1000, 5000 and
10000), Acct (overall accuracy for training dataset), Accv (overall accuracy for validation
dataset), Ser (sensibility for training dataset), Sev (sensibility for validation dataset), Spr
(specificity for training dataset), Spv (specificity for validation dataset), Prr (precision for
training dataset), Prv (precision for validation dataset), Rer (recall for training dataset), Rev
(recall for validation dataset), Fst (F-score for training dataset), Fsv (F-score for validation
dataset), AUCt (area under the Receiver Operating Characteristic curve for training dataset),
AUCT (area under the Receiver Operating Characteristic curve for validation dataset), MCCr
(Matthews correlation coefficient for training dataset) and MCCy (Matthews correlation
coefficient for validation dataset).

The statistical results in the use of PLSR for modeling and multi-objective optimizing the
LV-ML and RF-VS-LV-ML models are summarized in Table 14 to 20.
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Table 14. Statistical results of Partial Least Square Regression (PLSR) model fitting to assess
the influence of data approach, hyperparameters belonging to the Latent Variable-Support
Vector Machine (LV-SVM) and Latent Variable-Random Forest (LV-RF) and the number of
latent variables (NLVs) used in model tunning.

LV-SVM
) Raw model Screened model
Variable
VIP  Goodness of fit VIP  Goodness of fit
TDA 0.375 ns
FDA 0.336 ns
TFDA 0.443 0.554
TFDABH 0.579 0.572
TFDABS 1.174 0.953
Type 0.529 0.530
rbfdot 1.127 0.912
polydot 0.958 ONPLSR=2 (777 ONPLSR=2
R%=28.1% R%=27.8%
laplacedot 1437 Q2=2g9, 1163 Q2=27.7%
vanilladot ~ 0.948 RMSEm=3.34 "~ 769 RMSEm=3.35
RMSEcv=3.59 RMSEcv=3.59
besseldot 2.428 1.969
anovadot 1.063 0.860
C=100 0.012 ns
C=500.5 0.004 ns
C=1000 0.015 ns
NLVs 1.542 1.250
RS 0.080 ns
LV-RF
) Raw model Screened model
Variable
VIP  Goodness of fit VIP  Goodness of fit
TDA 0.206 ns
FDA 0.009 ns
TFDA 0.064 ns
TFDABH 0.074 ns
TFDABS 0.076 ns
DTe 2.924 ONPLSR=2 2.924 ONPLSR=2
R?=66.9% R?*=66.8%
NTs=50 0.547 Q2: 66.8% 0.547 Q2= 66.7%
NTs=500 0.592 RMSETr= 1.66 0.592 RMSETr=1.67
RMSEcv=1.92 RMSEcv=1.92
NTs=1000 0.595 0.595
NTs=5000 0.597 0.597
NTs=10000 0.597 0.597
NLVs 1.635 1.635
RS 0.029 ns

TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency-domain approach), TFDABH (time-frequency-
domain approach-block-scale hard), TFDABS (time-frequency-domain approach-block-scale soft), VIP (variable importance for the
projection), ONPLSR (optimal number of PLSR components), R? (coefficient of determination for training dataset), Q* (coefficient of
determination for K-Fold cross validation dataset), RMSEx (root mean square error for training dataset), RMSEcy (root mean square error
for K-Fold cross validation dataset), RS (replication of runs), kernel functions (rbfdot, polydot, laplacedot, vanilladot, besseldot, and
anovadot), C (regularization parameter), DTe (decision tree) and NTs (number of trees).
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Table 185. Statistical results of Partial Least Square Regression (PLSR) model fitting to assess
the influence of data approach, hyperparameters belonging to the Latent Variable-Naive
Bayes (LV-NB) and Latent Variable-Linear Discriminant Analysis (LV-LDA) and the
number of latent variables (NLVs) used in model tunning.

LV-NB
) Raw model Screened model
Variable
VIP Goodness of fit VIP  Goodness of fit
TDA 0.032 ns
FDA 0.211 ns
TFDA 0.079 ns
ONPLSR=1 ONPLSR=1
TFDABH 0.043 R2: 63.5% ns R2: 63.2%
TFDABS 0.057 Q*=63.3% ns  Q=63.1%
RMSETr=1.61 RMSErr= 1.62
LS=0  0.000 RMSEcv=1.82 1S RMSEcv=1.87
LS=1 0.000 ns
NLVs 2.990 1.000
RS 0.035 ns
LV-LDA
) Raw model Screened model
Variable
VIP Goodness of fit VIP  Goodness of fit
TDA 0.029 ns
FDA 0.006 ns
ONPLSR=1 ONPLSR=1
TFDA 0.008 R2=52.1% ns  R2=58.49%
TFDABH 0.005 Q*=52.0% ns  Q=583%
RMSETr= 1.61 RMSErr=1.01
_TFDABS 0.010 RMSEcy=1.72 DS RMSEcv= 1.24
NLVs 2.645 1.000
RS 0.033 ns

TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency-domain approach), TFDABH
(time-frequency-domain approach-block-scale hard), TFDABS (time-frequency-domain approach-block-scale soft), VIP
(variable importance for the projection), ONPLSR (optimal number of PLSR components), R? (coefficient of determination
for training dataset), Q? (coefficient of determination for K-Fold cross validation dataset), RMSETr (root mean square error
for training dataset), RMSEcv (root mean square error for K-Fold cross validation dataset), RS (replication of runs) and LS
(Laplace Smoothing).
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Table 16. Statistical results of Partial Least Square Regression (PLSR) model fitting to assess
the influence of data approach, hyperparameters belonging to the Latent Variable-Quadratic
Discriminant Analysis (LV-QDA) and Latent Variable-Generalized Linear Model (LV-
GLM) and the number of latent variables (NLVs) used in model tunning.

LV-QDA
) Raw model Screened model
Variable
VIP Goodness of fit VIP  Goodness of fit
TDA 0.022 ns
FDA 0.027 ns
ONPLSR=1 ONPLSR=1
TFDA 0.022 R2=55.4% ns  R2=5549%
TFDABH 0.035 Q*=55.3% ns  Q=553%
RMSETr=1.83 RMSETr=1.83
_TFDABS 0.034 RMSEcy=2.05 — 1S RMSEcv=2.10
NLVs 2.644 1.000
RS 0.075 ns
LV-GLM
] Raw model Screened model
Variable
VIP Goodness of fit VIP  Goodness of fit
TDA 0.013 ns
FDA 0.030 ns
ONPLSR=1 ONPLSR=1
TFDA 0.011 R2: 53.6% ns R2: 53.6%
TFDABH 0.016 Q*=53.5% ns  Q=53.5%
RMSETr= 1.83 RMSETr=1.83
_TFDABS 0.016 RMSEcy=2.01 — 15 RMSEcv=2.01
NLVs 2.645 1.000
RS 0.048 ns

TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency-domain approach), TFDABH
(time-frequency-domain approach-block-scale hard), TFDABS (time-frequency-domain approach-block-scale soft), VIP
(variable importance for the projection), ONPLSR (optimal number of PLSR components), R? (coefficient of determination
for training dataset), Q? (coefficient of determination for K-Fold cross validation dataset), RMSETr (root mean square error
for training dataset), RMSEcv (root mean square error for K-Fold cross validation dataset) and RS (replication of runs).
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Table 17. Statistical results of Partial Least Square Regression (PLSR) model fitting to assess
the influence of data approach and hyperparameters belonging to each Machine Learning

model.
Random Forest-Variable Selection-Latent Variable-Support Vector Machine (RF-VS-LV-SVM)
Variable Raw model Screened model
VIP Goodness of fit VIP Goodness of fit
TDA 0.099 ns
FDA 0.149 ns
TFDA 0.091 ns
TFDABH 0.180 ns
TFDABS 0.035 ns
Type 1.420 0.943
rbfdot 0.780 ONPLSR=2 0.518 ONPLSR=2
polydot 1.271 gzz O _osu gzz o
laplacedot 0.933 RMSEm=1.79 0.619 RMSEtr=1.79
vanilladot 1271 RMSEv=2.100 044 RMSEcv=2.10
besseldot 2.542 1.688
anovadot 1.642 1.090
C=100 0.019 ns
C=500.5 0.004 ns
C=1000 0.023 ns
RS 0.203 ns
Random Forest-Variable Selection-Latent Variable-Random Forest (RF-VS-LV-RF)
Variable Raw model Screened model
VIP Goodness of fit VIP Goodness of fit
TDA 0.047 ns
FDA 0.038 ns
TFDA 0.039 ns
TFDABH 0.028 ns
TFDABS 0.001 ONPLSR=1 ns ONPLSR=1
DTe 3.161 giz Wl a6l gzz B
NTs=50 0.606  RMSEmr=0.65 _ 0.606 RMSErr= 0.65
NTs=500 0.643 RMSEcv=0.92 0643 RMSEcv= 0.89
NTs=1000 0.635 0.635
NTs=5000 0.644 0.644
NTs=10000  0.634 0.634
RS 0.043 ns
Models RF-VS-LV-NB* RF-VS-LV-LDA*

RF-VS-LV-QDA*

RF-VS-LV-GLM*

TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency-domain approach), TFDABH (time-frequency-
domain approach-block-scale hard), TFDABS (time-frequency-domain approach-block-scale soft), VIP (variable importance for the
projection), ONPLSR (optimal number of PLSR components), R? (coefficient of determination for training dataset), Q? (coefficient of
determination for K-Fold cross validation dataset), RMSEx (root mean square error for training dataset), RMSEcy (root mean square error
for K-Fold cross validation dataset), RS (replication of runs), kernel functions (rbfdot, polydot, laplacedot, vanilladot, besseldot, and
anovadot), C (regularization parameter), DTe (decision tree) and NTs (number of trees). *No model was built because the first predictive
component was already not significant.
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Table 18. Multi-objective optimized Latent Variable-Machine Learning (LV-ML) models
for maximizing bone fragment detection in chicken breast samples. Results are expressed as
mean + standard error and presented separately for training (75%) and validation (25%)

datasets.
Optimized models
LV-SVM LV-RF LV-NB LV-LDA
Configuration Configuration Configuration Configuration
Goodness i) TFDA i) TFDA i) TFDABH i) FDA
of fit ii) Type: C-sve ii) NTs=50 ii) Ls=1 i) NLVs=3

iii) KF: anovadot
iv) C=100
v) NLVs=69

i) NLVs=71

iii) NVLs=69

Acc (%)

Training: 100.00 £ 0.00%4
Validation: 98.05 + 2.2434

Training: 100.00 £ 0.00%4
Validation: 99.02 + 1.26*4

Training: 98.26 +0.91%4
Validation: 97.56 + 2.30°4

Training: 81.24 +2.31%A
Validation: 82.20 + 4.75%4

Se

Training: 1.00 + 0.00
Validation: 0.99 £ 0.02

Training: 1.00 + 0.00
Validation: 1.00 + 0.00

Training: 1.00 + 0.00
Validation: 1.00 + 0.00

Training: 0.84 + 0.03
Validation: 0.83 = 0.08

Sp

Training: 1.00 = 0.00
Validation: 0.98 + 0.04

Training: 1.00 + 0.00
Validation: 0.98 + 0.03

Training: 0.96 + 0.02
Validation:0.95 + 0.04

Training: 0.78 + 0.02
Validation: 0.82 + 0.09

Fs

Training: 1.00 = 0.00
Validation: 0.98 £+ 0.02

Training: 1.00 + 0.00
Validation: 0.99 = 0.01

Training: 0.98 + 0.01
Validation:0.97 + 0.02

Training:0.82 + 0.03
Validation: 0.82 £ 0.05

P:

Training: 1.00 + 0.00
Validation: 0.98 + 0.05

Training: 1.00 + 0.00
Validation: 0.98 + 0.03

Training: 0.97 + 0.02
Validation: 0.95 + 0.04

Training: 0.80 + 0.03
Validation:0.81 + 0.10

Re

Training: 1.00 + 0.00
Validation: 0.99 + 0.02

Training: 1.00 + 0.00
Validation: 1.00 £ 0.00

Training: 1.00 + 0.00
Validation: 1.00 £ 0.00

Training: 0.84 + 0.03
Validation: 0.83 + 0.08

AUC

Training: 1.00 = 0.00
Validation: 0.98 + 0.02

Training: 1.00 + 0.00
Validation: 0.99 + 0.01

Training: 0.98 + 0.01
Validation: 0.98 £ 0.02

Training: 0.81 + 0.02
Validation: 0.83 £ 0.05

MCC

Training: 1.00 + 0.00
Validation: 0.96 + 0.04

Training: 1.00 + 0.00
Validation: 0.98 £+ 0.03

Training: 0.97 = 0.02
Validation: 0.95 £ 0.04

Training: 0.62 + 0.05
Validation: 0.65 £ 0.10

TP

Training: 60 + 2
Validation: 20 + 1

Training: 60 + 3
Validation: 21 +3

Training: 62 + 3
Validation: 19 +3

Training: 52 + 4
Validation: 16 +2

N

Training: 61 £2
Validation: 20 £ 1

Training: 61 + 3
Validation: 20 £ 3

Training: 57 + 3
Validation: 21 £3

Training: 47 + 3
Validation:17 + 2

FP

Training: 0 + 0
Validation: 0 + 0

Training: 0+ 0
Validation: 0 = 0

Training:0 + 0
Validation: 0 = 0

Training: 10 +2
Validation: 3 +2

FN

Training: 0+ 0
Validation: 0 + 1

Training: 0+ 0
Validation:0 + 1

Training: 2 + 1
Validation: 1 + 1

Training: 13 +2
Validation:4 + 2

CT (s)

Training: 0.237 + 0.009*

Training: 0.013 +0.007°

Training: 0.007 + 0.008¢

Training:0.056 + 0.011¢

Acc (overall accuracy), Se (sensibility), Sp (specificity), Pr (precision), Re (recall), Fs (F-score), AUC (area under the Receiver
Operating Characteristic curve), MCC (Matthews correlation coefficient), CT (computation time), FDA (frequency-domain
approach), TFDA (time-frequency-domain approach), TFDABH (time-frequency-domain approach-block-scale hard), KF
(kernel function), C (regularization parameter), NTs (number of trees), LS (Laplace Smoothing), and NLVs (number of latent variables).
Lowercase letters indicate statistically significant differences (p<0.05) between models, while uppercase letters indicate
statistically significant differences (p<0.05) between the goodness-of-fit performance of training and validation datasets.
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Table 19. Multi-objective optimized Latent Variable-Machine Learning (LV-ML) and
Random Forest-Variable Selection-Latent Variable-Machine Learning (RF-VS-LV-ML)
models for maximizing bone fragment detection in chicken breast samples. Results are
expressed as mean + standard error and presented separately for training (75%) and validation

(25%) datasets.
Optimized models
LV-QDA LV-GLM RF-VS-LV-SVM RF-VS-LV-RF
Goodness Configuration Configuration . Configuration ' Configuration
of fit : . i) TFDABS i) FDA
) TDA D TDA ii) Type: C-sve ii) NTs=50
i) NVLs=3 i) NVLs=10 ype: ’

iii) KF: anovadot
iv) C=100

Acc (%)

Training: 81.98 +2.67%
Validation: 80.49 + 5.39%A

Training: 83.72 &= 1.56"
Validation: 83.41 + 4.42b4

Training: 100.00 + 0.004
Validation: 98.05 + 1.544

Training: 100.00 + 0.004
Validation: 99.27 &+ 1.18%A

Se

Training: 0.84 + 0.04
Validation: 0.80 £ 0.07

Training: 0.86 + 0.02
Validation: 0.83 £ 0.07

Training: 1.00 = 0.00
Validation: 0.99 £ 0.02

Training: 1.00 = 0.00
Validation: 1.00 £ 0.00

Sp

Training: 0.80 + 0.03
Validation: 0.82 + 0.09

Training: 0.81 + 0.02
Validation: 0.84 = 0.09

Training: 1.00 = 0.00
Validation: 0.97 + 0.03

Training: 1.00 = 0.00
Validation: 0.99 £ 0.02

Fs

Training: 0.82 + 0.03
Validation: 0.80 + 0.06

Training: 0.84 + 0.01
Validation: 0.83 + 0.04

Training: 1.00 = 0.00
Validation: 0.98 + 0.02

Training: 1.00 = 0.00
Validation: 0.99 £+ 0.01

P:

Training: 0.81 + 0.03
Validation: 0.80 £ 0.10

Training: 0.82 + 0.01
Validation: 0.84 + 0.08

Training: 1.00 = 0.00
Validation: 0.97 + 0.03

Training: 1.00 = 0.00
Validation: 0.99 + 0.02

Re

Training: 0.84 + 0.04
Validation: 0.80 £ 0.07

Training: 0.86 + 0.02
Validation: 0.83 £ 0.07

Training: 1.00 = 0.00
Validation: 0.99 £ 0.02

Training: 1.00 = 0.00
Validation: 1.00 £ 0.00

AUC

Training: 0.82 + 0.03
Validation: 0.81 + 0.06

Training: 0.84 + 0.02
Validation: 0.83 + 0.05

Training: 1.00 = 0.00
Validation: 0.98 = 0.01

Training: 1.00 = 0.00
Validation: 0.99 = 0.01

MCC

Training: 0.64 + 0.05
Validation: 0.61 £ 0.11

Training: 0.67 + 0.03
Validation: 0.67 + 0.09

Training: 1.00 = 0.00
Validation: 0.96 + 0.03

Training: 1.00 = 0.00
Validation: 0.99 + 0.02

TP

Training: 51 +4
Validation: 16 £ 2

Training: 53 +2
Validation: 16 + 2

Training: 60 + 3
Validation: 20 £ 3

Training: 60 + 2
Validation: 21 £ 2

TN

Training: 48 + 4
Validation: 17 +2

Training: 48 + 3
Validation: 18 +3

Training: 61 +3
Validation: 20 + 3

Training: 61 +2
Validation: 20 +2

FP

Training: 10 +2
Validation: 4 + 2

Training: 8 + 1
Validation: 3 + 1

Training: 0+ 0
Validation: 0 + 0

Training: 0 + 0
Validation: 0 = 0

FN

Training: 12 £2
Validation: 4 + 2

Training: 11 £ 1
Validation: 3 +2

Training: 0 + 0
Validation: 1 + 1

Training: 0 + 0
Validation: 0 + 0

CT (s)

Training: 0.054 + 0.010¢

Training: 0.052 + 0.010¢

Training: 0.086 + 0.009¢

Training: 0.006 + 0.008°

Acc (overall accuracy), Se (sensibility), Sp (specificity), Pr (precision), Re (recall), Fs (F-score), AUC (area under the Receiver
Operating Characteristic curve), MCC (Matthews correlation coefficient), CT (computation time), TDA (time-domain
approach), FDA (frequency-domain approach), TFDABS (time-frequency-domain approach-block-scale soft), KF (kernel
function), C (regularization parameter), NTs (number of trees) and NLVs (number of latent variables). Lowercase letters indicate
statistically significant differences (p<0.05) between models, while uppercase letters indicate statistically significant

differences (p<0.05) between the goodness-of-fit performance of training and validation datasets.
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Table 20. Multi-objective optimized Random Forest-Variable Selection-Latent Variable-
Machine Learning (RF-VS-LV-ML) models for maximizing bone fragment detection in
chicken breast samples. Results are expressed as mean + standard error and presented
separately for training (75%) and validation (25%) datasets.

Goodness
of fit

Optimized models

RF-VS-LV-NB RF-VS-LV-LDA RF-VS-LV-QDA RF-VS-LV-GLM
Configuration Configuration Configuration Configuration
i) TFDA i) TFDABS i) TDA i) TFDABS
ii) LS=1

Ace (%)

Training: 97.93 £ 1.47%4
Validation: 97.07 + 3.784

Training: 90.00 £ 1.76°4
Validation: 78.78 + 6.90°8

Training: 99.75 + 0.40%4
Validation: 74.63 + 6.92B

Training: 97.36 + 4.4434
Validation: 79.51 + 6.82°8

Se

Training: 1.00 + 0.01
Validation: 1.00 £ 0.00

Training: 0.89 + 0.03
Validation: 0.73 £ 0.17

Training: 0.99 + 0.01
Validation: 0.98 + 0.03

Training: 0.98 + 0.04
Validation: 0.74 £ 0.16

Sp

Training: 0.96 + 0.03
Validation: 0.95 £ 0.07

Training: 0.91 + 0.04
Validation: 0.85 £ 0.07

Training: 1.00 = 0.00
Validation: 0.49 £ 0.13

Training: 0.97 + 0.05
Validation: 0.84 £ 0.09

Fs

Training: 0.98 + 0.01
Validation: 0.97 + 0.04

Training: 0.90 + 0.02
Validation: 0.76 £ 0.12

Training: 1.00 + 0.00
Validation: 0.80 = 0.06

Training: 0.97 + 0.04
Validation: 0.77 + 0.12

P:

Training: 0.96 + 0.02
Validation: 0.94 + 0.07

Training: 0.91 + 0.02
Validation: 0.82 + 0.08

Training: 1.00 + 0.00
Validation: 0.68 + 0.09

Training: 0.97 + 0.05
Validation: 0.83 £+ 0.07

Re

Training: 1.00 + 0.01
Validation: 1.00 £ 0.00

Training: 0.89 + 0.03
Validation: 0.73 £ 0.17

Training: 0.99 + 0.01
Validation: 0.98 + 0.03

Training: 0.98 + 0.04
Validation: 0.74 £ 0.16

AUC

Training: 0.98 + 0.01
Validation: 0.97 £ 0.03

Training: 0.90 + 0.02
Validation: 0.79 £ 0.07

Training: 1.00 = 0.00
Validation: 0.74 £ 0.06

Training: 0.97 + 0.04
Validation: 0.79 £ 0.07

MCC

Training: 0.96 + 0.03
Validation: 0.94 = 0.07

Training: 0.80 + 0.04
Validation: 0.59 +0.13

Training: 1.00 = 0.00
Validation: 0.55 £ 0.11

Training: 0.95 + 0.09
Validation: 0.60 + 0.13

TP

Training: 60 + 4
Validation: 20 + 4

Training: 54 + 4
Validation: 15 + 4

Training: 59 + 3
Validation: 21 £ 3

Training: 59 + 3
Validation: 15 + 4

TN

Training: 58 + 4
Validation: 19 £ 3

Training: 55 + 5
Validation: 18 £ 2

Training: 61 +3
Validation: 10 £ 3

Training: 58 £ 5
Validation: 18 £3

FP

Training: 0 + 0
Validation: 0 = 0

Training: 6 + 2
Validation: 6 + 4

Training: 0 + 0
Validation: 0 + 1

Training: 1 +3
Validation: 5 + 3

FN

Training: 2 + 2
Validation: 1 =2

Training: 6 + 2
Validation: 3 + 2

Training: 0+ 0
Validation: 10 + 3

Training: 2 + 3
Validation: 3 + 2

CT (s)

Training: 0.005 + 0.007¢

Training: 0.002 + 0.006°

Training: 0.006 + 0.008¢

Training: 0.005 + 0.007¢

Acc (overall accuracy), Se (sensibility), S (specificity), Pr (precision), Re (recall), Fs (F-score), AUC (area under the Receiver
Operating Characteristic curve), MCC (Matthews correlation coefficient), CT (computation time), TDA (time-domain
approach), TFDA (time-frequency-domain approach), TFDABS (time-frequency-domain approach-block-scale soft) and LS
(Laplace Smoothing). Lowercase letters indicate statistically significant differences (p<0.05) between models, while
uppercase letters indicate statistically significant differences (p<0.05) between the goodness-of-fit performance of training
and validation datasets.
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The statistical PLSR results on LV-SVM model (Table 14), showed that a the PLSR fit with
ONPLSR= 2 yields modest explanatory power (R*= 28.1%, Q*= 28.0%, RMSErr= 3.34 and
RMSEcv=3.59), and the screened specification preserves essentially the same generalization
(R?=27.8%, Q*=27.7%, RMSEr= 3.35 and RMSEcv = 3.59), indicating that pruning low-
influence regressors enhances parsimony without changing performance. VIP values
revealed that the Type and KF mostly influence the statistical performance results: laplacedot
(VIP 1.437 to 1.163), besseldot (2.428 to 1.969), rbfdot (1.127 to 0.912), anovadot (1.063 to
0.860), and polydot/vanilladot (0.95 to 0.77) retained important influence after model
screening, whereas the SVM regularization parameter C was not statistically significant in
the tested range (VIP= 0.01-0.02; non-significant post-screening). The SVM “type” (C-svc
vs nu-svc) remains moderately informative (VIP= 0.53 in both stages). The NVLs exhibited
a high VIP (1.542 to 1.250), confirming that latent dimensionality is a primary lever for bias-
variance control in this classifier. Data domain approach (TDA, FDA, TFDA, TFDABH and
TFDABS) carries mixed raw VIPs, TFDABS is relatively large in the raw model (1.174) but
attenuates post-screening (0.953), which signals redundancy between domain features and
kernel-latent interactions. RS was negligible (VIP= 0.08; non-significant), manifesting that
the data partition of the experimental dataset did not affect the goodness of fit of model in
both training and validation sets.

In the LV-RF model (Table 14), ONPLSR= 2 with high goodness of fit (R*= 66.9%, Q*=
66.8%, RMSETr= 1.66 and RMSEcy = 1.92) that remains stable after screening (R*= 66.8%
and Q*= 66.7%). The results showed that the DTe mostly influence the goodness of fit metrics
(VIP= 2.924, unchanged after screening) and the ensemble size NTs were consistently
influential (VIP= 0.55-0.60 for NTs= 50, 500, 1000, 5000, 10000), while NLVs also ranks
high (VIP=1.635). Data-domain indicators show very low VIPs and drop to non-significance
upon screening, which implies that the statistical performance in RF is driven by ensemble
architecture rather than by the data approach used.

Regarding to eh LV-NB (Table 15), the results indicated that this model was largely
controlled by latent dimensionality. With ONPLSR= 1, the raw model attains R*= 63.5% and
Q’= 63.3% (RMSEtr= 1.61 and RMSEcv= 1.82) and the screened model maintains similar
generalization (R? = 63.2% and Q*= 63.1%; RMSEcv = 1.87). NLVs shows a very high VIP
that collapses to unity after screening (2.990 to 1.000), while LS was not significant (VIP= 0
for both LS levels). Domain variables have small VIPs and become non-significant under
screening, supporting the view that the NB decision surface benefits mainly from how the
latent space was parameterized. For LV-LDA, ONPLSR= 1 with a notable improvement due
to screening: R?/Q? rise from 52.1 to 52.0% and 58.4 to 58.3%, and errors drop sharply
(RMSEmr= 1.61 to 1.01 and RMSEcv 1.72 to 1.24). Additionally, NLVs concentrates the
explanatory power (VIP= 2.645 to 1.000), while data approaches were not statistically
significant.

Similarly to LV-LDA, the LV-QDA and LV-GLM (Table 16), the LV-QDA, used an
ONPLSR= 1 with R? = 55.4% and Q*= 55.3% in both raw and screened models; RMSEcy
increases slightly after screening (2.05 to 2.10), a tolerable bias increment exchanged for
interpretability. NLVs drives the performance (VIP 2.644 to 1.000), whereas domain
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variables remain weak. The GLM fit is similarly stable (ONPLSR= 1; R*/Q’= 53.6/53.5%
unchanged by screening; RMSEcy = 2.01), with NLVs again showed the highest importance
(VIP 2.645 to 1.000) and data approaches remained non-significance.

Regarding the RF-VS based models (Table 17) which quantify how this strategy of variable
selection interacts with downstream classifiers. For RF-VS-LV-SVM, ONPLSR= 2 with R?=
62.5% and Q*= 61.2% (RMSErr= 1.79 and RMSEcy = 2.10) and a screened specification
that preserves Q? (62.0% to 61.1%). The SVM type remains highly informative after
screening (VIP 1.420 to 0.943), and the KF continues to be the principal determinant of
variability: besseldot (2.542 to 1.688) and anovadot (1.642 to 1.090) lead, followed by
polydot and vanilladot (1.27 to 0.844) and then laplacedot and rbfdot (0.93 and 0.78 raw;
0.62 and 0.52 screened). The C parameter was also negligible (VIP= 0.02; non-significant),
and data approach become non-significant after screening. PLSR model fitting on the RF-
VS-LV-RF results (Table 17) used ONPLSR= 1 with moderate fit and generalization (R*=
53.7%; Q*= 51-52%; RMSErr= 0.65 and RMSEcv= 0.89 to 0.92) that is again stable after
screening. DTe remains the dominating factor (VIP=3.161), NTs holds substantial influence
(VIP= 0.60-0.64), and domain indicators are weak and non-significant. Notably, no PLSR
was retained for RF-VS-LV-NB, RF-VS-LV-LDA, RF-VS-LV-QDA and RF-VS-LV-GLM
because the first predictive component was already not significant, which is consistent with
the earlier observation that these models were mainly influenced by NLVs and simple
structural choices that RF-VS has already filtered.

The multi-objective optimized LV-ML (Table 18) established the best configuration of SVM
model to maximize the BF detection capability. The best performing optimized LV-SVM
model was defined by employing TFDA data approach, Type: C-svc, KF: anovadot, C=100
(or any of the other two, C=500.5 or C=1000) and NLVs= 69. Using this configuration, the
model reached Accr= 100.00 £ 0.00% and Accv= 98.05 £+ 2.24%,, with AUCt=1.00 and
AUCv=0.98 and MCCr= 1.00 and MCCvy=0.96; CT was moderate (0.237 s). LV-RF model
using TFDA, NTs= 50 and NLVs= 71, achieved Ac.r= 100.00 £ 0.00% and Accv=99.02 +
1.26% with AUCT=1.00 and AUCv=0.99 and MCCr= 1.00 and MCCv=0.98, but with a
significantly lower CT (0.013 s), indicating a superior accuracy-efficiency balance within the
LV-ML. LV-NB by employing TFDABH with LS= 1 and NLVs= 69 sustains high validation
(97.56 £2.30%) and strong MCC (0.95) at minimal computational cost (0.007 s), positioning
NB as an ultra-efficient alternative with only a small performance gap relative to SVM/RF.
LV-LDA under FDA with NLVs= 3 provided stable but lower ceilings (Accv= 82.20% and
MCCvy= 0.65) with moderate time (0.056 s).

The results of LV-ML and RF-VS-LV-ML (Table 19) comparison in reveals the decisive
effect of RF-VS when coupled with high-capacity learners. RF-VS-LV-SVM with TFDABS,
C-svc, anovadot and C = 100 achieved Acct=100.00 £ 0.00% and Accv=98.05 £+ 1.54%, with
high Se, Sy, Pr, Re, AUC and MCC at a higher cost than RF (0.086 s). RF-VS-LV-RF with
FDA and NTs= 50 delivered the strongest validated performance among all models (Accv=
99.27 +1.18% and Sev, Spv and MCCy >0.99) with the lowest CT reported in the table (0.006
s). LV-QDA and LV-GLM models exhibited a low goodness of fit with Acc <80% in both
training and validation datasets.
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The statistical results of RF-VS-LV-NB using TFDA and LS= 1 exhibited Accv= 97.07
3.78%, AUCv 0.97 and MCCyv 0.94 and an extremely low CT (0.005 s), making it a
compelling choice when throughput dominates. RF-VS-LV-QDA trained on TDA exhibits
marked overfitting, Acct=99.75 + 0.40% compared to Accv= 74.63 £ 6.92%, which indicates
that quadratic boundaries inflate variance in this latent regime unless covariance shrinkage
or stricter dimensionality control is imposed. RF-VS-LV-GLM under TFDABS shows
intermediate behavior (Accv=79.51%) and RF-VS-LV-LDA under TFDABS remains the
lowest among the hybrids in validation (Accv= 78.78%).

The global PLSR modeling integrating all optimized models (Fig. 46) highlights systematic
relationships across all classifiers. Models with higher flexibility, such as LV-SVM and LV-
RF, achieve the highest training accuracies and associated R? values, but also exhibit the
largest gaps in Q? and validation metrics. By contrast, simpler models such as LV-NB, LV-
LDA, and LV-GLM achieve lower peak performance but present more balanced training-
validation behavior, as reflected in their MCC and AUC values. Hybrid approaches involving
RF-based variable selection consistently show improved generalization relative to their non-
screened counterparts, particularly for RF-VS-LV-SVM and RF-VS-LV-RF models,
confirming the importance of dimensionality reduction in mitigating overfitting. The overall
PLSR results emphasize that model selection cannot rely solely on training accuracy but must
be informed by validation-oriented metrics such as Q?, RMSEcv, AUCy and MCCy as well
as by VIP-based screening to identify the most influential hyperparameters and data
approaches. Subsequently, the use of PLSR model in the multi-objective optimization process
allowed to determine that the RF-VS-LV-RF was the most accurate with the minimal CT
model in the detection of BF within chicken breast samples. Thus, this model was considered
as the best performing model in all frameworks and strategies tested. Additionally, the
ANOVA results for Accand CT (Section 2.7.2.3) revealed statistically significant differences
(p<0.05) across all optimized models. The homogeneous groups defined by LSD intervals
further indicated that the RF-VS-LV-RF model was the most effective for detecting BF in
chicken breast samples, as it achieved significantly higher A and lower CT (p<0.05).
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Fig. 46. Partial Least Square Regression (PLSR) modeling to assess the statistical
classification performance results of the optimized Latent Variable-Support Vector Machines
(LV-SVM), Latent Variable-Random Forest (LV-RF), Latent Variable-Naive Bayes (LV-
NB), Latent Variable-Linear Discriminant Analysis (LV-LDA), Latent Variable-Quadratic
Discriminant Analysis (LV-QDA), Latent Variable-Generalized Linear Model (LV-GLM),
Random Forest-Variable Selection-Latent Variable-Support Vector Machines (RF-VS-LV-
SVM), Random Forest-Variable Selection-Latent Variable-Random Forest (RF-VS-LV-RF),
Random Forest-Variable Selection-Latent Variable-Naive Bayes (RF-VS-LV-NB), Random
Forest-Variable Selection-Latent Variable- Linear Discriminant Analysis (RF-VS-LV-
LDA), Random Forest-Variable Selection-Latent Variable- Quadratic Discriminant Analysis
(RF-VS-LV-QDA) and Random Forest-Variable Selection-Latent Variable- Generalized
Linear Model (RF-VS-LV-GLM) models. NPLSR (computed number of PLSR components),
R? (coefficient of determination for training dataset), Q* (coefficient of determination for K-
Fold cross validation dataset), RMSEtr (root mean square error for training dataset),
RMSEcv (root mean square error for K-Fold cross validation dataset), RSS (residual sum
squares), T? (Hotelling’s T-squared), VIP (variable Importance for the projection), Accr
(overall accuracy for training dataset), Accv (overall accuracy for validation dataset), Ser
(sensibility for training dataset), Sev (sensibility for validation dataset), Syt (specificity for
training dataset), Spv (specificity for validation dataset), P;t (precision for training dataset),
Pv (precision for validation dataset), Rer (recall for training dataset), Rev (recall for
validation dataset), Fst (F-score for training dataset), Fsv (F-score for validation dataset),
AUCT (area under the Receiver Operating Characteristic curve for training dataset), AUCr
(area under the Receiver Operating Characteristic curve for validation dataset), MCCr
(Matthews correlation coefficient for training dataset) and MCCy (Matthews correlation
coefficient for validation dataset).
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The optimization of LVs through RF-VS-LV-RF revealed critical insights into feature
selection and model calibration. Using the MDA criterion, the RF model identified a subset
of LVs with maximal contribution to classification accuracy (Fig. 47A). This eigenspace was
subsequently employed within the RF-VS-LV-RF framework, resulting in the best-
performing optimized model when using frequency-domain features (RF-VS-LV-RF-FDA).
The MDA-based ranking highlights that spectral descriptors extracted from the ultrasound
frequency distribution provide the strongest differentiation power between control samples
and those containing BF. Among the most relevant variables, energy-magnitude parameters
such as My, spectral shape VARs,, SKEsp), KURsp, ENTsp, as well as frequency-domain peaks
such as F; and Mp, consistently appear in the top 30 FDA features (Figs. 47B to 47H). Their
elevated importance scores confirm that perturbations in spectral energy distribution, caused
by acoustic scattering from BF, constitute a robust biomarker for automated classification
procedure.

The eigenspace defined by the nine most important LVs (as determined by MDA) was further
analyzed through PC projections (Fig. 48). The three-dimensional score plots reveal a clear
clustering structure, with separation between control tissues and those containing BF of
different sizes. Larger defects (2.0 x 1.5 cm, 2.0 x 1.0 cm) form distinct clusters distant from
control samples, while smaller fragments (1.0 x 0.3 cm and 0.5 x 0.3 cm) remain closer but
still separable in the reduced eigenspace. The two-dimensional projection of PC70 vs. PCI
further illustrates the differentiation capacity of the selected eigenspace, with minimal
overlap across classes. This visualization confirms that the reduced LV space retains the
essential information required for robust classification, validating the RF-VS feature
selection strategy.
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Fig. 47. Optimal Latent Variables (LVs) selected using the Mean Decrease Accuracy (MDA,
%) criterion from the Random Forest (RF) model. This eigenspace was employed for
calibration and validation of the Random Forest-Variable Selection-Latent Variable-Random
Forest (RF-VS-LV-RF) framework. Using frequency-domain (FDA) features to feed the RF-
VS-LV-RF yielded the best-performing optimized model (RF-VS-LV-RF-FDA). Variable
importance of each LV in maximizing sample classification (with vs. without bone
fragments) according to RF accuracy (A). Loading plots of the 30 most important FDA
energy-magnitude-distribution ultrasound parameters ranked by MDA (B to H). Parameters
include My (zero-order moment), F; (center frequency of the phase spectrum), MP (maximum
peak of the frequency spectrum), VAR, (spectral variance of the phase spectrum), SKE;s,
(spectral skewness of the phase spectrum), KUR, (spectral kurtosis of the phase spectrum),
and ENTjy, (spectral entropy of the phase spectrum).
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Fig. 48. Three-dimensional score plots of the nine most important Latent Variables (LVs;
Fig. 47) selected by the Mean Decrease Accuracy (MDA) criterion from the Random Forest-
Variable selection (RF-VS) strategy. Panels (A to C) show representative combinations of
principal components (PCs) derived from the frequency-domain (FDA) features, while panel
(D) presents the two-dimensional score projection of PC70 vs PC1 for clustering comparison.
Sample groups correspond to Control and different bone fragment defect sizes (2.0x1.5 cm,
2.0x1.0 cm, 1.5%0.3 cm, 1.0%0.3 cm, and 0.5 % 0.3 cm). This selected eigenspace was used
to feed the RF-VS-LV-RF yielded the best-performing optimized model (RF-VS-LV-RF-
FDA).
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A deeper validation of the optimized RF-VS-LV-RF-FDA model (NTs= 50) is provided
(Table 21), where classification performance is evaluated against real BF sizes in chicken
breast samples. The model achieved perfect detection across all fragment categories, from
large fragments (2.0%1.5 cm) to the smallest (0.5%0.3 cm), without a single misclassification
across bone-containing samples (total OC = 81/81 correctly predicted). For control samples,
the classification was correct in nearly all cases (80/81), with only a single instance of
misclassification across 100 RS of the experimental dataset. This outcome highlights both
the robustness and the extremely high sensitivity of the RF-VS-LV-RF-FDA framework,
capable of identifying even the smallest embedded bone fragments with near-perfect
accuracy and representing an improvement in the previous detection results based on MIA-
MSPC (Table 13).

The statistical results defined the RF-VS-LV-RF-FDA as the most effective strategy for BF
detection in chicken breast samples. The integration of FDA features with RF-driven variable
selection and latent variable compression achieves an optimal balance between accuracy,
generalization, and computational efficiency. Compared with conventional LV-based
classifiers, the hybrid framework demonstrates a decisive performance advantage, achieving
statistical metrics that approach the theoretical upper limit of classification reliability. This
confirms that the combination of eigenspace optimization, FDA ultrasound feature analysis,
and ensemble ML strategies constitutes a powerful tool for non-invasive food safety
monitoring using ultrasound spectroscopy.

Table 21. Classification performance of the optimized Random Forest-Variable Selection-
Latent Variable-Random Forest (RF-VS-LV-RF) model using frequency-domain (FDA)
features, yielding the best-performing configuration (RF-VS-LV-RF-FDA) for detecting
bone fragments (BF) of varying sizes in chicken breast samples.

RF-VS-LV-RF-FDA-NTs=50

Type of BF  Number of samples (real) Number of samples (predicted)

2.0x1.5 cm 15 15

2.0x1.0 cm 17 17

(all?y(;)es) 1.5x0.3 cm 17 17
1.0x0.3 cm 15 15

0.5x0.3 cm 17 17

Total OC 81 81
Control 81 80*

NTs (number of random trees), OC (Out-of-Control). *Classification performance of all control samples using
the RF-VS-LV-RF-FDA model with NTs = 50, failed in at least one sample across the 100 random partitions
of the experimental dataset.

101



4. Conclusions

This work provides a comprehensive demonstration of the potential of ultrasound imaging,
combined with advanced multivariate image analysis and machine learning modeling-
strategies, to achieve robust, accurate, and computationally efficient detection of bone
fragments in chicken breast based products.

Ultrasound contact imaging has proven to be an effective and valuable technology for
detecting bone fragments of varying sizes, regardless of their location within the chicken
breast. The difference in acoustic impedance between the chicken breast and the bone
fragments, mainly due to the presence of air gaps within bone pieces, significantly
contributed to increase energy attenuation and changed ultrasound velocity. The detection of
bone fragments was influenced by their size, although good classification results were found
for all the different sizes considered.

The energy-magnitude and energy-distribution ultrasound parameters, computed in the time-
frequency domains, effectively detected the bone fragments within chicken breast fillets.
Both temporal and frequency-based approaches quantified similar information regarding
ultrasound signal attenuation and alterations in the wave distribution caused by the presence
of varying sizes of bone fragments.

The Residual Sum Squares multivariate control statistic has proven to be the most robust
unsupervised model for detecting bone fragments (overall accuracy >95%) within chicken
breasts, irrespective of the ultrasound parameters (time-frequency) used during the model’s
tuning. This approach has emerged as a valuable tool for integration into a monitoring system,
facilitating the classification of contact ultrasound images of control chicken breasts and
those containing bone fragments.

The integration of Multivariate Image Analysis with Latent Variable-based Machine
Learning models provides a reliable strategy to enhance the detection of bone fragments in
chicken breast samples. Compared with purely unsupervised approaches, the proposed
framework significantly improved overall classification accuracy and robustness across
fragment sizes (improvement of 3%>). The incorporation of Random Forest-based variable
selection further reduced computational complexity while increasing model performance,
confirming the value of combining feature-space dimensionality reduction with Machine
Learning classification.

The integration of Random Forest-based Variable Selection with Latent Variable-based
Machine Learning models significantly enhanced the detection of bone fragments while
reducing model complexity. By combining feature-space dimensionality reduction,
eigenspace optimization, and Machine Learning classification, this strategy achieved higher
statistical performance in both training and validation datasets. Further, Mean Decrease
Accuracy-based variable importance analysis improved detection by ranking latent variables
derived from the unsupervised approach according to their contribution to Random Forest

102



accuracy. The pruning strategy of the eigenspace retained only the most relevant latent
variables, thereby maximizing the classification performance for contaminated and
uncontaminated chicken breast samples.

Partial Least Squares Regression model proved to be a reliable tool for advancing the multi-
objective optimization of Machine Learning models. It enabled the exploration of underlying
relationships between model hyperparameters, the number of latent variables obtained from
the unsupervised approach, and data approaches (time, frequency, and time-frequency
domains). Variable screening using the Variable Importance for the Projection criterion
computed from the Partial Least Squares Regression model reduced noise and improved
robustness, while also identifying which hyperparameters and feature types most strongly
influenced classification performance. This information was then used to optimize models in
a multi-objective manner, maximizing performance across both training and validation
datasets. Based on this approach, the optimized Random Forest-Variable Selection-Latent
Variable-Random Forest model achieved highly accurate detection of bone fragments of
different sizes (overall accuracy: training=100%, validation=99.27%), enabling real-time
quality monitoring of bone presence in chicken breast products. The model also combined
high accuracy with very short training times (0.006 s), clearly outperforming computationally
heavier alternatives tested.

The multi-objective optimized Random Forest-Variable Selection-Latent Variable-Random
Forest model revealed that the frequency-domain approach provides the most robust
fingerprints for bone fragment detection. Particularly, the energy-magnitude and energy-
distribution parameters such as the zero-order moment, maximum peak of phase spectra,
phase spectrum center frequencies, spectral variance, spectral skewness, spectral kurtosis,
and spectral entropy proved to be the most relevant ultrasound parameters for maximizing
the differentiation between control and out-of-control samples.

This research demonstrates that ultrasound imaging, when combined with advanced
multivariate image analysis, machine learning, and optimization strategies, provides an
effective approach to food safety monitoring. The proposed multi-objective framework
ensured that the resulting model was not only accurate, but also generalizable, interpretable,
and computationally efficient. These findings represent an important step toward the
development of intelligent, non-invasive monitoring systems for the poultry industry.

Future work should be conducted in order to assess the detection limits of contact ultrasound
technology for detecting small-sized bone fragments and to detect foreign bodies of different
nature, such as plastics, glass, and metal pieces, which could also contaminate the chicken
breast during the manufacturing process. This will be essential to develop a robust industrial
prototype that can be used for real-time quality monitoring of the entire poultry meat
production.
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9. Supplementary material

The results of the unsupervised PCA-MSPC detection of BF, obtained through the feature
extraction approach based on first-order statistics applied to ultrasound energy-magnitude-
distribution parameters (Section 2.7.1.3), are summarized in Tables 1S to 3S. In addition, the
results regarding the improvement of BF detection using latent-variable-based machine
learning techniques (Section 2.7.2) have been systematically compiled into 120 Excel files,
provided as supplementary material. These files include the complete datasets, detailed
outcomes, and computational analyses that support and validate the findings of this study.
Specifically, they summarize the results of multivariate statistical modeling using machine
learning techniques within the latent variables framework (SVM, DTe, RF, NB, LDA, QDA,
and GLM), as well as those obtained from the Random Forest-Variable Selection strategy
(RF-RV-LV-ML) applied to SVM, DTe, RF, NB, LDA, QDA, and GLM. Furthermore, the
statistical results of all hyperparameters configurations tested for LV-SVM are separately
represented considering TDA (Fig. 1S), FDA (Fig. 2S), TFDA (Fig. 3S), TFDABH (Fig. 4S)
and TFDABS (Fig. 5S) data approaches.
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Table 1S. Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control statistics
for detection of bone fragments using feature-extraction time-domain approach (feTDA).

feTDA-RSS
LA (%) Control limit (%) OPCs  Ac (%) S S
0 90 29  85.67+ 148 0.86+0.03 0.86+0.02
0 95 26 87.25+1.05 0.86+0.02 0.89+0.02
0 97.5 26 88.13+1.11 0.84+0.02 0.92+0.02
0 99 26 87.96+ 141 0.81+0.03 0.95+0.02
50 90 25 89.10+ 129 0.85+0.02 0.93+0.02
50 95 26 8836+ 126 0.81+0.03 0.96+0.02
50 97.5 26 87.09+1.59 0.77+0.03 0.97 +0.02
50 99 26 84.52+£2.00 0.71+0.04 0.98+0.02
75 90 25 8898+ 1.18 0.82+0.02 0.96+0.02
75 95 26 87.10+1.60 0.77+0.03 0.97 +0.02
75 97.5 26 85.19+1.71 0.72+0.04 0.98+0.02
75 99 25 8230+2.10 0.66+0.05 0.99+0.01
100 90 26 87.64+152 0.79+0.03 0.96+0.02
100 95 26 8599+ 1.81 0.75+0.04 0.97+0.01
100 97.5 26 83.67+226 0.69+0.05 0.98+0.01
100 99 25 80.86+1.68 0.63+0.04 0.99+0.01
feTDA-T
LA (%) Control limit (%) OPCs  Ac (%) S. S

0 90 31 86.22+1.00 0.86+0.01 0.86=0.02
0 95 37 88.56+0.70 0.89+0.01 0.88+0.02
0 97.5 40 89.80+0.76 0.89+0.01 0.90=0.01
0 99 40 90.20+0.90 0.88+0.01 0.92+0.02
50 90 40 89.68+1.04 0.85+0.02 0.95+0.02
50 95 40 8933+ 1.10 0.84+0.02 0.95+0.02
50 97.5 40 88.98+1.10 0.83+0.02 0.95+0.02
50 99 40 8849+ 1.00 0.81+0.02 0.96+0.02
75 90 40 88.59+0.83 0.82+0.02 0.96+0.02
75 95 40 88.20+0.86 0.81+0.02 0.96+0.02
75 97.5 40 87.59+0.88 0.79+0.02 0.96+0.02
75 99 40 86.94+1.07 0.78+0.03 0.96+0.02
100 90 40 87.43+0.93 0.78+0.02 0.96+0.02
100 95 40 86.77+1.05 0.77+0.02 0.97 +0.02
100 97.5 40 8590+ 1.18 0.75+0.03 0.97 +0.02
100 99 40  85.02+ 120 0.73+0.03 0.97 +0.02

feTDA (feature-extraction time-domain approach), RSS (Residual Sum Squares), T? (Hotelling’s T-squared),
limit augmentation (LA), OPCs (optimal number of principal components), A (overall accuracy), S

(sensibility) and S, (specificity). Results are expressed as mean + standard error.
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Table 2S. Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control statistics
for detection of bone fragments using feature-extraction frequency-domain approach
(feFDA).

feFDA-RSS
LA (%) Control limit (%) OPCs  Ac (%) S S
0 90 21  85.67+1.18 0.86+0.03 0.86+0.02
0 95 27  88.94+ 136 0.88+0.03 0.89+0.02
0 97.5 27  88.87+1.66 0.85+0.04 0.93+0.02
0 99 28 87.69+1.89 0.81+0.04 0.95+0.02
50 90 30 88.41+1.99 0.85+0.04 0.91+0.02
50 95 27 87.69+1.56 0.80+0.03 0.95+0.02
50 97.5 27 85.85+2.01 0.76+0.05 0.96+0.02
50 99 27 83.25+2.61 0.69+0.06 0.97+0.02
75 90 31 87.96+2.22 0.82+0.05 0.94+0.02
75 95 31 85.68+2.99 0.77+0.06 0.95+0.02
75 97.5 27 83.63+2.16 0.70+0.05 0.97 +0.02
75 99 28  81.83+249 0.66+0.06 0.98+0.02
100 90 31 86.67+2.40 0.79+0.05 0.94 = 0.02
100 95 31 83.83+3.27 0.72+0.07 0.95+0.02
100 97.5 27 82.54+2.19 0.67+0.05 0.98+0.01
100 99 28 80.07+2.54 0.62+0.05 0.98=0.01
feFDA-T?
LA (%) Control limit (%) OPCs  Ac (%) S. S

0 90 32 85.86+1.03 0.86+0.02 0.86+0.02
0 95 35 90.20+0.87 0.91+0.02 0.89+0.02
0 97.5 35 91.20+0.91 0.90+0.02 0.92 +0.02
0 99 35 91.60+0.88 0.90+0.02 0.93 +0.02
50 90 35 89.64+1.03 0.83+0.03 0.96=0.02
50 95 35 88.56+1.29 0.81+0.03 0.96+0.02
50 97.5 35  87.35+1.59 0.78+0.04 0.97 = 0.02
50 99 35 8670+ 1.57 0.77+0.04 0.97 = 0.02
75 90 35 86.28+1.34 0.76+0.03 0.97 +0.02
75 95 35 84.94+1.47 0.73+0.03 0.97 = 0.02
75 97.5 35 83.59+1.60 0.70+0.04 0.97 +0.02
75 99 35 82.80+1.54 0.68+0.04 0.97+0.02
100 90 35 83.06+ 1.68 0.69+0.04 0.98 +0.02
100 95 35 81.84+1.77 0.66+0.04 0.98 +0.02
100 97.5 35 81.05+1.65 0.64+0.04 0.98 +0.02
100 99 35  80.64+ 1.44 0.63+0.04 0.98 +0.02

feFDA (feature-extraction frequency-domain approach), RSS (Residual Sum Squares), T (Hotelling’s T-
squared), limit augmentation (LA), OPCs (optimal number of principal components), A (overall accuracy), Se

(sensibility) and S, (specificity). Results are expressed as mean + standard error.

121



Table 3S. Optimized Principal Component models (PCA) and statistical performance of the
Residual Sum Squares (RSS) and Hotelling’s T-squared (T?) multivariate control statistics
for detection of bone fragments using feature-extraction time-frequency domain approach
(feTFDA).

feTFDA (feature-extraction time-frequency domain approach), RSS (Residual Sum Squares), T2 (Hotelling’s
T-squared), limit augmentation (LA), OPCs (optimal number of principal components), A.. (overall accuracy),

feTFDA-RSS

LA (%) Control limit (%) OPCs  Ac (%) S S
0 90 14 86.12+1.09 0.86+0.01 0.86+0.02
0 95 21 88.83+1.12 0.89+0.02 0.89+0.02
0 97.5 30 90.43+1.55 0.90+0.04 0.90 +0.02
0 99 33 9117+ 1.61 0.90+0.04 0.92 +0.02
50 90 30 90.99+1.19 0.91+0.02 0.91 +0.02
50 95 34 92.05+1.10 0.91+0.02 0.93+0.02
50 97.5 36 92.83+1.15 0.93+0.03 0.93 +0.02
50 99 37 92.61+1.25 0.92+0.03 0.93+0.02
75 90 35 92.85+1.05 0.93+0.02 0.93 +0.02
75 95 37 93.04+1.00 0.94+0.02 0.93+0.02
75 97.5 38 93.04+1.02 0.93+0.02 0.93+0.02
75 99 40 9278+ 1.18 0.93+0.02 0.93 +0.02
100 90 36 9239+ 1.15 0.92+0.02 0.93 +0.02
100 95 38 92.74+0.89 0.93+0.02 0.93+0.01
100 97.5 41 92.85+1.07 0.93+0.02 0.93+0.02
100 99 43 9278+ 1.08 0.92+0.02 0.93 +0.02

feTFDA-T?

LA (%) Control limit (%) OPCs  Ac (%) S. S
0 90 37 86.14+0.87 0.86+0.02 0.86=0.02
0 95 41 88.23+1.00 0.88+0.01 0.89+0.02
0 97.5 44 90.28+0.99 0.90+0.02 0.90 = 0.01
0 99 45 91.01+0.87 0.90+0.02 0.92+0.02
50 90 50 92.37+1.04 0.92+0.02 0.93+0.02
50 95 51 93.12+0.89 0.94+0.01 0.93+0.02
50 97.5 51 92.99+0.90 0.93+0.01 0.93+0.02
50 99 51 92.85+0.99 0.93+0.02 0.93 +0.02
75 90 52 92.79+0.85 0.93+0.02 0.93 +0.02
75 95 52 92.53+0.93 0.92+0.02 0.93 +0.02
75 97.5 53 93.30+0.86 0.94+0.02 0.93 +0.02
75 99 53 93.22+0.91 0.93+0.02 0.93+0.02
100 90 54 93.44+0.98 0.93+0.02 0.93 +0.02
100 95 54 93.22+0.88 0.93+0.02 0.94+0.02
100 97.5 54 93.08+0.93 0.92+0.02 0.94+0.02
100 99 55 93.63+0.94 0.94+0.01 0.93+0.02

Se (sensibility) and S, (specificity). Results are expressed as mean + standard error.
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Fig. 18. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-domain approach (TDA), shown as a function of the SVM
hyperparameters and the number of latent variables (NLVs) tested. Results of overall
accuracy (Acc) are reported separately for the training (75%) and the validation (25%)
datasets.
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Fig. 28S. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the frequency-domain approach (FDA), shown as a function of the SVM
hyperparameters and the number of latent variables (NLVs) tested. Results of overall
accuracy (Acc) are reported separately for the training (75%) and the validation (25%)
datasets.
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Fig. 3S. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-frequency-domain approach (TFDA), shown as a function of the
SVM hyperparameters and the number of latent variables (NLVs) tested. Results of overall
accuracy (Acc) are reported separately for the training (75%) and the validation (25%)
datasets.
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Fig. 4S. Statlstlcal classification performance of the Latent Varlable Support Vector Machine
(LV-SVM) using the time-frequency-domain approach-block-scale hard (TFDABH), shown
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested.
Results of overall accuracy (Acc) are reported separately for the training (75%) and the
validation (25%) datasets.
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Fig. 5S. Statistical classification performance of the Latent Variable-Support Vector Machine
(LV-SVM) using the time-frequency-domain approach-block-scale soft (TFDABS), shown
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested.
Results of overall accuracy (Acc) are reported separately for the training (75%) and the
validation (25%) datasets.
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10. Annexed
Sustainable development goals

This master’s thesis, entitled: Non-invasive detection of bone fragments in poultry meat by
the integration of ultrasound imaging, multivariate image analysis and machine learning,
aligns closely with the triple impact goals of the United Nations Sustainable Development
Goals (SDGs). Firstly, by ensuring the safety and quality of poultry and food products, this
research supports SDG 3: Good Health and Well-being, by reducing the risk of injuries
caused by bone fragments. In addition, this research supports SDG 2: Zero Hunger, as
improving food safety, minimizing waste, and increasing the reliability of animal protein
production directly contribute to global food security and the availability of safe, nutritious
food for all.

Secondly, the adoption of non-invasive, real-time detection methods enhances operational
efficiency and reduces waste, contributing to SDG 12: Responsible Consumption and
Production. Lastly, the implementation of advanced technologies such as machine learning
and ultrasound based-imaging promotes innovation and sustainable industrial practices,
aligning with SDG 9: Industry, Innovation, and Infrastructure. The integration of these
cutting-edge technologies not only addresses food safety concerns but also fosters sustainable
practices within the food industry, thereby creating a comprehensive impact on health,
production efficiency, and technological advancement.
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