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Abstract 

Poultry meat industry requires intelligent systems for achieving non-invasive, non-
destructive and real-time detection of bone fragments (BF). Therefore, the main aim of this 
study was to assess the feasibility of using ultrasound imaging, multivariate image analysis 
(MIA)-based multivariate statistical process control (MSPC) and Latent Variable based 
Machine Learning (LV-ML) to detect varying-size BF within boneless and skinless chicken 
breast fillets. BF of different sizes (2.0 × 1.5 cm, 2.0 × 1.0 cm, 1.5 × 0.3 cm, 1.0 × 0.3 cm, 
and 0.5 × 0.3 cm) were inserted into the chicken breast fillets in five different locations. 
Contact ultrasound images were acquired in the control (C) and out-control (OC, with bone) 
chicken breast fillets, by scanning the breast’s surface, using transmission mode contact 
ultrasound sensors (1 MHz), following a pre-established pattern. Energy-magnitude and 
energy-distribution ultrasound parameters were computed at pixel level considering three 
approaches: time-domain (TDA), frequency domain (FDA), and the combination of time and 
frequency domains (TFDA). Additionally, the time-frequency domains block-scale hard 
(TFDABH) and time-frequency domains block-scale soft (TFDABS) were also assessed. For 
each approach, MIA-SPC procedure was followed considering the Principal Component 
Analysis (PCA) as basis latent-space. From PCA model, the Residual Sum Squares (RSS) 
and Hotelling’s T-square (T2) control statistics were used to classify the C and OC images 
projected on the PCA latent structure. In the case of LV-ML models, seven ML techniques 
were trained (75%) and validated (25%) to classify the C and OC images projected on the 
PCA latent eigenspace. Furthermore, the Mean-Decrease Accuracy (MDA)-Random Forest 
(RF)-Variable Selection (VS) framework was applied to identify and rank the most relevant 
LVs, thereby maximizing the detection performance of a new set of Latent Variable-based 
Machine Learning (RF-VS-LV-ML) classifiers. Partial Least Squares Regression (PLSR) 
was then used as a statistical tool for modeling and multi-objective optimization, enabling 
the exploration of the relationships between ML model hyperparameters, number of LVs 
tested, and time-frequency block-scaled domains data approaches. Results demonstrated that 
the presence of bone fragments within chicken breast fillets led to alterations in the energy-
magnitude (avg. amplitude decrease from 81.6% to 52.6%, depending on the bone size) and 
energy-distribution ultrasound parameters (avg. variance decrease from 97.9% to 70.6% 
depending on the bone size). The RSS statistic achieved the best classification performance 
(accuracy of TDA, FDA and TFDA>95%) in distinguishing between C and OC images. 
Furthermore, the combined use of LV-ML models, RF-VS-LV-ML and PLSR multi-
objective optimization led to determine the best performing RF-VS-LV-RF-FDA model with 
a classification accuracy above 99% in both training and validation datasets, while 
maintaining reasonably computational time for training process. These results highlight the 
potential of integrating ultrasound imaging with advanced MIA and ML modeling strategies 
for the rapid and accurate detection of BF in chicken breast fillets. This approach offers a 
non-invasive and computationally efficient tool, paving the way for real-time detection and 
the implementation of fast, intelligent, non-invasive and non-destructive quality inspection 
systems in poultry meat industry. 
 
 

Keywords: chicken breast, foreign bodies, bone fragments, in-line and real-time quality 
monitoring, multivariate image analysis, multivariate statistical quality monitoring, 
unsupervised and supervised machine learning, variable selection, multi-objective 
optimization.  



 
 

 
 

Resumen 
 
La industria de la carne de ave requiere sistemas inteligentes que permitan la detección no 
invasiva, no destructiva y en tiempo real de fragmentos óseos (BF). Por lo tanto, el objetivo 
principal de este estudio fue evaluar la viabilidad del uso de imágenes por ultrasonido, 
análisis multivariante de imágenes (MIA) basado en control estadístico multivariante de 
procesos (MSPC) y modelos de aprendizaje automático basados en variables latentes (LV-
ML) para detectar BF de diferentes tamaños en filetes de pechuga de pollo deshuesados y sin 
piel. BF de diferentes dimensiones (2.0×1.5 cm, 2.0×1.0 cm, 1.5×0.3 cm, 1.0×0.3 cm y 
0.5×0.3 cm) fueron insertados en los filetes de pechuga en cinco ubicaciones distintas. Se 
adquirieron imágenes ultrasónicas de contacto en filetes control (C) y fuera de control (OC, 
con hueso) mediante el escaneo de la superficie de la pechuga en modo de transmisión, 
usando sensores ultrasónicos de contacto de 1 MHz y siguiendo un patrón preestablecido. 
Los parámetros ultrasónicos de magnitud y distribución de energía se calcularon a nivel de 
píxel considerando tres enfoques: dominio del tiempo (TDA), dominio de la frecuencia 
(FDA) y la combinación de ambos (TFDA). Adicionalmente, se evaluaron los enfoques de 
TFDA con escalado por bloques duros (TFDABH) y suave (TFDABS). Para cada enfoque, 
se aplicó el procedimiento MIA-MSPC considerando el Análisis de Componentes Principales 
(PCA) como espacio latente de base. A partir del modelo PCA, las estadísticas de Suma de 
Cuadrados Residuales (RSS) y T-cuadrado de Hotelling (T2) se utilizaron para clasificar las 
imágenes C y OC proyectadas en la estructura latente del PCA. En el caso de los modelos 
LV-ML, se entrenaron siete técnicas de aprendizaje automático (75%) y se validaron (25%) 
para clasificar las imágenes C y OC proyectadas en el espacio latente del PCA. Además, se 
aplicó la Selección de Variables del Bosque Aleatorio basado en la Disminución de Precisión 
Media (MDA-RF-VS) para identificar y jerarquizar las variables latentes más relevantes, 
maximizando así el rendimiento de detección en un nuevo conjunto de clasificadores de 
aprendizaje automático basados en variables latentes (RF-VS-LV-ML). Posteriormente, la 
Regresión por Mínimos Cuadrados Parciales (PLSR) se utilizó como herramienta estadística 
para modelado y optimización multiobjetivo, lo que permitió explorar las relaciones entre los 
hiperparámetros de los modelos de ML, el número de LV evaluadas y los enfoques de datos 
en dominios tiempo-frecuencia con escalado por bloques. Los resultados demostraron que la 
presencia de fragmentos óseos en filetes de pechuga de pollo provocó alteraciones en los 
parámetros ultrasónicos de energía-magnitud (disminución promedio de la amplitud de 
81.6% a 52.6%) y energía-distribución (disminución promedio de la varianza de 97.9% a 
70.6%). La estadística RSS alcanzó el mejor desempeño de clasificación (precisión de TDA, 
FDA y TFDA >95%) al diferenciar entre imágenes C y OC. Asimismo, el uso combinado de 
modelos LV-ML, RF-VS-LV-ML y la optimización multiobjetivo mediante PLSR permitió 
determinar que el modelo RF-VS-LV-RF-FDA fue el de mejor desempeño, con una precisión 
de clasificación superior al 99%, manteniendo tiempos de cómputo razonables durante el 
proceso de entrenamiento. Estos resultados destacan el potencial de integrar imágenes por 
ultrasonido con estrategias avanzadas de MIA y ML para la detección rápida y precisa de BF 
en filetes de pechuga de pollo. Este enfoque ofrece una herramienta no invasiva y 
computacionalmente eficiente, allanando el camino para la detección en tiempo real y la 
implementación de sistemas de inspección de calidad rápidos, inteligentes, no invasivos y no 
destructivos en la industria avícola. 
 
Palabras clave: pechuga de pollo, cuerpos extraños, fragmentos óseos, monitoreo de calidad 
en línea y en tiempo real, análisis de imágenes multivariado, monitoreo estadístico 
multivariado de calidad, aprendizaje automático supervisado y no supervisado, selección de 
variables, optimización multiobjetivo. 



 
 

 
 

Resum 
 
La indústria de la carn d'au requerix sistemes intel·ligents que permeten la detecció no 
invasiva, no destructiva i en temps real de fragments gose-us (BF). Per tant, l'objectiu 
principal d'este estudi va ser avaluar la viabilitat de l'ús d'imatges per ultrasò, anàlisi 
multivariant d'imatges (MIA) basat en control estadístic multivariant de processos (MSPC) i 
models d'aprenentatge automàtic basats en variables latents (LV-ML) per a detectar BF de 
diferents grandàries en filets de pit de pollastre desossats i sense pell. BF de diferents 
dimensions (2.0×1.5 cm, 2.0×1.0 cm, 1.5×0.3 cm, 1.0×0.3 cm i 0.5×0.3 cm) van ser inserits 
en els filets de pit de pollastre en cinc ubicacions distintes. Es van adquirir imatges 
ultrasòniques de contacte en filets control (C) i fora de control (OC, amb os) mitjançant 
l'escaneig de la superfície del pit de pollastre en mode de transmissió, usant sensors 
ultrasònics de contacte d'1 MHz i seguint un patró preestablit. Els paràmetres ultrasònics de 
magnitud i distribució d'energia es van calcular a nivell de píxel considerant tres enfocaments: 
domini del temps (TDA), domini de la freqüència (FDA) i la combinació dels dos (TFDA). 
Addicionalment, es van avaluar els enfocaments de TFDA amb escalat per blocs durs 
(TFDABH) i suau (TFDABS). Per a cada enfocament, es va aplicar el procediment MIA-
MSPC considerant l'Anàlisi de Components Principals (PCA) com a espai latent de base. A 
partir del model PCA, les estadístiques de Suma de Quadrats Residuals (RSS) i T-quadrat de 
Hotelling (T2) es van utilitzar per a classificar les imatges C i OC projectades en l'estructura 
latent del PCA. En el cas dels models LV-ML, es van entrenar set tècniques d'aprenentatge 
automàtic (75%) i es van validar (25%) per a classificar les imatges C i OC projectades en 
l'espai latent del PCA. A més, es va aplicar la Selecció de Variables del Bosc Aleatori basat 
en la Disminució de Precisió Mitjana (MDA-RF-VS) per a identificar i jerarquitzar les 
variables latents més rellevants, maximitzant així el rendiment de detecció en un nou conjunt 
de classificadors d'aprenentatge automàtic basats en variables latents (RF-VS-LV-ML). 
Posteriorment, la Regressió per Mínims Quadrats Parcials (PLSR) es va utilitzar com a 
ferramenta estadística per a modelatge i optimització multiobjectiu, la qual cosa va permetre 
explorar les relacions entre els hiperparámetros dels models de ML, el número de LV 
avaluades i els enfocaments de dades en dominis temps-freqüència amb escalat per blocs. Els 
resultats van demostrar que la presència de fragments ossis en filets de pit de pollastre va 
provocar alteracions en els paràmetres ultrasònics d'energia-magnitud (disminució mitjana 
de l'amplitud de 81.6% a 52.6%) i energia-distribució (disminució mitjana de la variància de 
97.9% a 70.6%). L'estadística RSS va aconseguir el millor acompliment de classificació 
(precisió de TDA, FDA i TFDA >95%) en diferenciar entre imatges C i OC. Així mateix, l'ús 
combinat de models LV-ML, RF-VS-LV-ML i l'optimització multiobjectiu mitjançant PLSR 
va permetre determinar que el model RF-VS-LV-RF-FDA va ser el de millor acompliment, 
amb una precisió de classificació superior al 99%, mantenint temps de còmput raonables 
durant el procés d'entrenament. Estos resultats destaquen el potencial d'integrar imatges per 
ultrasò amb estratègies avançades de MIA i ML per a la detecció ràpida i precisa de BF en 
filets de pit de pollastre. Este enfocament oferix una ferramenta no invasiva i 
computacionalment eficient, aplanant el camí per a la detecció en temps real i la 
implementació de sistemes d'inspecció de qualitat ràpids, intel·ligents, no invasius i no 
destructius en la indústria avícola. 
 

Paraules clau: pit de pollastre, cossos estranys, fragments ossis, monitoratge de qualitat en 
línia i en temps real, anàlisi d'imatges multivariat, monitoratge estadístic multivariat de 
qualitat, aprenentatge automàtic supervisat i no supervisat, selecció de variables, optimització 
multiobjectiu.  



 
 

 
 

PREFACE 
 
Driven by both personal interest and professional commitment to providing objective 
information that supports decision-making in the meat industry and the broader food sector, 
this research was developed within the framework of the master’s degree in data analysis, 
process improvement, and decision support engineering at Universitat Politècnica de 
València.  
 
The main aim of this work was the development of quantitative tools (such as digital models 
of food manufacturing processes) for monitoring food quality and detecting foreign bodies in 
food products. During the master’s dissertation period, significant efforts were devoted to 
calibrating robust multivariate statistical models tailored for industrial implementation. In 
addition, throughout the academic training provided by the master’s program, particularly in 
those courses related to the use of advanced statistical techniques, the knowledge provided 
has laid the groundwork for the development of intelligent systems (digital models in 
combination with cutting-edge ultrasound technologies) that can contribute to statistical 
quality monitoring, process optimization, and informed decision-making within the food 
industry.  
 
As a result, different tools (models, methodologies, patents, among others) have been 
developed and are now available to be applied in real-world scenarios, advancing the 
response to the challenges faced by the food industry in the context of Industry 4.0. These 
tools enable more effective quality monitoring and decision-making within the food sector. 
Furthermore, they provide valuable insights for optimizing non-invasive and non-destructive 
quality inspection systems, enhancing overall efficiency in production lines, and helping to 
overcome the challenges posed by the ongoing digitalization of the agrifood sector. 
 
The main contributions of this study are outlined as follows: 
 
Research patents: 
 

1. Collazos-Escobar, Gentil Andrés., Peña Cerveró, Ramón., Bon Corbín, José., 
Benedito Fort, José Javier., Prats-Montalbán, José Manuel., García-Pérez, José 
Vicente., Cárcel, J. A., Fernández-Caballero-Fariñas, María Dolores. Dispositivo y 
Procedimiento para la Detección No Invasiva de Cuerpos Extraños en Alimentos 
Sólidos o Semisólidos con Ultrasonidos. UNIVERSIDAD POLITECNICA DE 
VALENCIA; AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIG. 
CIENTIFICAS, P202330154. 23 Feb 2023. 

  



 
 

 
 

Research awards: 
 

1. Collazos-Escobar, Gentil Andrés., Prats-Montalbán, José Manuel., Benedito 
Fort, José Javier., Giacomozzi, Soledad., Cárcel, Juan., García-Pérez, José Vicente. 
(2023). Detección no-invasiva de presencia de insectos en postres gelificados 
mediante ultrasonidos sin contacto. VIII Encuentro de Estudiantes de Doctorado de 
la Universitat Politècnica de València. València, España. 

 
2. Collazos-Escobar, Gentil Andrés., Medina-Casas, Martha Patricia., García-Pérez, 

José Vicente. (2024). Sistemas avanzados e inteligentes para la monitorización no 
invasiva de la calidad de los alimentos (AI-FoodSafety). IV Edición de los Premios 
Aula Emprende en la Universitat Politècnica de València. València, España. 

 
 
Research articles 
 
Published: 
 

1. Collazos-Escobar, Gentil Andrés., Gutiérrez-Guzmán, Nelson., Váquiro-Herrera, 
Henry., Bon, José., Cárcel, Juan., García-Peréz, José Vicente. (2023). Model-based 
investigation of the water adsorption in Achira (Canna edulis K.) biscuits. LWT, Food 
Science and Technology. DOI: https://doi.org/10.1016/j.lwt.2023.115472 

 
2. Collazos-Escobar, Gentil Andrés., Barrios-Rodríguez Yeison., Bahamón-Monje 

Andres., Gutiérrez-Guzmán, Nelson. (2024). Mid-infrared spectroscopy and machine 
learning as a complementary tool for sensory quality assessment of roasted cocoa-
based products. Infrared Physics & Technology, Volume 141, September 2024, 
105482. DOI: https://doi.org/10.1016/j.infrared.2024.105482 
 

3. Collazos-Escobar, Gentil Andrés., Lincetti, Elisa., Spilimbergo, Sara., Prats-
Montalbán, José Manuel., García-Pérez, José Vicente., Benedito, José. (2025). 
Integrated use of ultrasound imaging and multivariate image analysis for detecting 
bone fragments in poultry meat. Food Research International, Volume 206, April 
2025, Article: 16047. DOI: https://doi.org/10.1016/j.foodres.2025.116047  

 
4. Collazos-Escobar, Gentil Andrés., Gutiérrez-Guzmán Nelson., Váquiro Henry A., 

García-Pérez José Vicente., Cárcel Juan A. (2025). Analysis of machine learning 
algorithms for the computer simulation of moisture sorption isotherms of coffee 
beans. Food and Bioprocess Technology. DOI: https://doi.org/10.1007/s11947-025-
03785-x 
 

5. Collazos-Escobar, Gentil Andrés., Prats-Montalbán, José Manuel., Giacomozzi, 
Soledad., Benedito, José., Gómez Álvarez-Arenas, Tomas E. and García-Pérez, José 
Vicente. (2025). Contactless detection of internal foreign bodies in foods using air-

https://doi.org/10.1016/j.lwt.2023.115472
https://doi.org/10.1016/j.infrared.2024.105482


 
 

 
 

coupled ultrasound: case studies on beef burger patties and jelly plates. Food 
Engineering. DOI: https://doi.org/10.1016/j.jfoodeng.2025.112777 

 
 
Research articles from collaboration: 
 

1. Sanchez-Jimenez, Virginia., Collazos-Escobar, Gentil Andrés., González-Mohino, 
Alberto., Gomez Alvarez-Arenas, Tomas., Benedito, José Javier., García-Pérez, 
José Vicente. (2023). Non-invasive monitoring of potato drying by means of air-
coupled ultrasound. Food Control. DOI: 10.1016/j.foodcont.2023.109653 
 

2. Llavata, Beatriz., Collazos-Escobar, Gentil. Andrés., García-Pérez, José Vicente., 
Cárcel, Juan. (2024). PEF pre-treatment and ultrasound-assisted drying at different 
temperatures as a stabilizing method for the up-cycling of kiwifruit: Effect on drying 
kinetics and final quality. Innovative Food Science & Emerging Technologies. DOI: 
https://doi.org/10.1016/j.ifset.2024.103591 
 

3. Khanlar. Malikeh., Collazos-Escobar, Gentil Andrés., García-Pérez, José 
Vicente., Cárcel, Juan. (2025). Oleuropein extraction from olive leaves assisted by 
moderate electric fields and high-power ultrasound. A parametric study. Applied 
Food Research, Article 100654. DOI: https://doi.org/10.1016/j.afres.2024.100654 

 
 
Book chapters: 
 

1. Collazos-Escobar, Gentil Andrés, Gutiérrez-Guzmán, Nelson., Váquiro-Herrera, 
Henry., Bon, José., Cárcel, Juan., García-Peréz, José Vicente. (2023). Modelling of 
water sorption isotherms of dehydrated coffee beans using machine learning 
techniques. https://www.eurodrying2023.p.lodz.pl/travel-and-accomodation/  

https://doi.org/10.1016/j.foodcont.2023.109653
https://doi.org/10.1016/j.ifset.2024.103591
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In addition, we have participated in various national and international conferences during the 
master’s dissertation period: 
 
International conferences: 
 

1. Collazos-Escobar, Gentil Andrés., García-Peréz, José Vicente., Prats-
Montalbán, José Manuel. (2021). Multivariate image analysis for detection of 
foreign bodies in burger meat. V Congreso Internacional de Investigación e 
Innovación en Ingeniería, Ciencia y Tecnología de Alimentos (IICTA 2021). Oral 
presentation. 
 

2. Collazos-Escobar, Gentil Andrés., Gutiérrez-Guzmán, Nelson., Barrios-Rodriguez, 
Yeison. (2021). Mathematical sorption and machine learning modeling for predicting 
the equilibrium moisture content of specialty coffee beans (Coffee arabica L. Bourbon 
Rosado). V Congreso Internacional de Investigación e Innovación en Ingeniería, 
Ciencia y Tecnología de Alimentos (IICTA 2021). Oral presentation. 

 
3. Collazos-Escobar, Gentil Andrés., Prats-Montalbán, José Manuel., Cárcel, Juan 

A., García-Pérez, José Vicente., Bon Corbín, José (2022). Convolutional Neural 
Networks for detecting foreign bodies in burger meat patties based on digital images. 
XIII Congreso Iberoamericano de Ingeniería de Alimentos (CIBIA 2022). Medellín, 
Colombia. Poster presentation. 

 
4. Collazos-Escobar, Gentil Andrés., Bon, José., García-Pérez, José Vicente., 

Cárcel, Juan., Gutiérrez-Guzmán, Nelson. (2022). Artificial Neural Networks for 
predicting the water sorption isotherms of dehydrated cocoa and coffee products. XIII 
Congreso Iberoamericano de Ingeniería de Alimentos (CIBIA 2022). Medellín, 
Colombia. Oral presentation. 

 
5. Collazos-Escobar, Gentil Andrés., Blanquer-Fernández, Maria., Benedito, José., 

Cárcel, Juan., Prats-Montalbán, José Manuel., Bon, José., García-Pérez, José 
Vicente. (2022). Rapid and non-destructive quality inspection of jelly products using 
acoustic ultrasonic imaging combined with machine learning techniques. 15th 

Conference of Food Engineering (CoFE’22). Raleigh, EEUU. Oral presentation. 
 

6. Collazos-Escobar, Gentil Andrés., Sanchez-Jimenez, Virginia., Blanquer-
Fernández, María., García-Peréz, José Vicente., Cárcel, Juan., Prats-Montalbán, 
José Manuel., Benedito, José Javier. (2023). Combination of acoustic imaging and 
machine learning algorithms for the rapid characterization of jelly-based products. 
14th International Congress on Engineering and Food (ICEF14). Nantes, France. Oral 
presentation.  



 
 

 
 

7. Collazos-Escobar, Gentil Andrés., Barrios-Rodríguez, Yeison., Bahamon-Monje, 
Andrés., Gutiérrez-Guzmán, Nelson., Cárcel, Juan., García-Pérez, José Vicente. 
(2023). Combination of machine learning with mid-infrared spectroscopy for sensory 
quality assessment of roasted cocoa-based products. 37th EFFoST International 
Conference. València, Spain. Poster presentation. 

 
8. Collazos-Escobar, Gentil Andrés., Giacomozzi, Soledad., Prats-Montalbán, José 

Manuel., Benedito, José., Gosalbez, José., García-Pérez, José Vicente. (2023). 
Improvement in the detection of foreign bodies in jelly-based products through 
wavelet-based ultrasound-imaging. 37th EFFoST International Conference. València, 
Spain. Poster presentation. 

 
9. Collazos-Escobar, Gentil Andrés., Giacomozzi, Soledad., Prats-Montalbán, José 

Manuel., Benedito, José., Gosalbez, José., García-Pérez, José Vicente. (2023). Use 
of air-coupled ultrasound in combination with machine learning to detect insects in 
gelled desserts. 37th EFFoST International Conference. València, Spain. Poster 
presentation. 

 
10. Collazos-Escobar, Gentil Andrés., Lincetti, Elisa., Giacomozzi, Soledad., 

Spilimbergo, Sara., Benedito, José., García-Pérez, José Vicente. (2023). Detection 
of bone fragments in chicken breast using non-invasive air-coupled ultrasound 
imaging. 37th EFFoST International Conference. València, Spain. Poster presentation. 

 
11. Collazos-Escobar, Gentil Andrés., Giacomozzi, Soledad., Prats-Montalbán, José 

Manuel., Benedito, José., García-Pérez, José Vicente. (2023). Non-invasive 
detection of foreign bodies in burger meat patties by contactless ultrasound imaging. 
37th EFFoST International Conference. València, Spain. Oral presentation. 
 

12. Collazos-Escobar, Gentil Andrés., Llavata, Beatriz., García-Pérez, José Vicente., 
Simal, Susana., Zhang, Hongwei., Cárcel, Juan. (2025). Computer modeling of 
ultrasonically assisted drying of PEF-pretreated kiwifruit using machine learning 
techniques. 39th EFFoST International Conference. Porto, Portugal. Poster 
presentation. 

 
13. Collazos-Escobar, Gentil Andrés., Bahamón-Monje, Andrés., Salas-Calderón, 

Karen., Barrios-Rodriguez, Yeison., Gutiérrez-Guzmán, Nelson. (2025). Detection of 
coffee defects in green and roasted beans using Deep Learning and infrared 
spectroscopy. 39th EFFoST International Conference. Porto, Portugal. Poster 
presentation. 

 
14. Collazos-Escobar, Gentil Andrés., Hussaim, Tassadaq., Benedito, José, Zhang, 

Hongwei., Cárcel, Juan., García-Pérez José Vicente. (2025). Latent-based machine 
learning and contact ultrasound for detection of foreign bodies in jelly-based 
products. 39th EFFoST International Conference. Porto, Portugal. Poster presentation. 



 
 

 
 

 
15. Collazos-Escobar, Gentil Andrés., Morales-Angulo, Ever., Bahamón-Monje, 

Andres., Gutiérrez-Guzmán, Nelson. (2025). Non-destructive quality assessment of 
green and roasted specialty coffee using machine learning and FT-NIR spectroscopy. 
39th EFFoST International Conference. Porto, Portugal. Poster presentation. 

 

National conferences: 
 

1. Collazos-Escobar, Gentil Andrés., Cárcel, Juan A., García-Pérez, José Vicente., 
Lincetti E., Benedito Fort, José Javier., Prats-Montalbán, José Manuel., Bon 
Corbín, José. (2022). Aplicación de la transformada wavelet discreta para la rápida 
detección de cuerpos extraños en pechuga de pollo a partir de imágenes acústicas. XI 
Congreso Nacional de Ciencia y Tecnología de los Alimentos (CyTA/CESIA 2022). 
Zaragoza, España: Servicio de Publicaciones Universidad de Zaragoza. Poster 
presentation. 

 
2. Collazos-Escobar, Gentil Andrés., Bon, José., Benedito, José., Cárcel, Juan., 

García-Pérez, José Vicente., Prats-Montalbán, José Manuel., Lincetti, Elisa. 
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INDUSTRIAL RELEVANCE 
  
In recent years, the poultry meat industry has experienced significant growth and has become 
the most widely produced type of meat globally. Consumption continues to increase, 
primarily due to its affordability and high nutritional value. 
 
One persistent challenge in the poultry industry is the detection of bone fragments. During 
the rapid mechanical deboning process, industrial machinery separates chicken breasts from 
the skeleton, which can lead to small bone fragments being embedded in the fillets. To ensure 
consumer safety, it is crucial to detect these fragments in-line and in real time. As a result, 
the poultry industry requires intelligent systems capable of non-invasive, real-time bone 
fragment detection. 
 
In the context of Industry 4.0, the integration of non-invasive and non-destructive 
technologies with advanced digital models such as multivariate statistical techniques, 
machine learning, and deep learning offers innovative solutions for real-time quality 
monitoring of food products. In this regard, the combination of ultrasound imaging, 
multivariate image analysis, and machine learning is essential. The development of intelligent 
monitoring systems based on these technologies can enable fast and accurate inline detection 
of bone fragments, reducing contamination risks and ensuring consumer safety. 
 
Digital twins, a digital representations of physical poultry quality monitoring systems, 
facilitate interactive communication between ultrasound systems and data-driven models 
(e.g., statistical, machine learning, and deep learning). Implementing digital twins supports 
continuous monitoring and optimization of detection systems, ensuring high standards of 
quality control while enhancing both production efficiency and product quality. Therefore, 
this study highlights the role of multivariate statistical models and machine learning as digital 
models in improving bone fragment detection in chicken breasts. By data-driven modeling 
and model optimization, the inline-implementation of these models can significantly reduce 
the occurrence of bone fragments, resulting in safer and higher-quality poultry products. 
Thus, the adoption of these technologies demonstrates their potential to transform food safety 
protocols not only within the poultry sector, but across the entire food processing industry. 
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Highlights 
 

• Non-invasive and non-destructive methodology is proposed to detect bone fragments 
(BF) within chicken breast products. 

• Ultrasound imaging, multivariate image analysis (MIA) and machine learning (ML) 
methods were combined to detect BF within poultry meat. 

• The presence of BF reduced ultrasonic energy-related parameters.  
• Ultrasound imaging allowed detecting bone fragments in chicken breast fillets. 
• Integrated used of MIA and Multivariate Statistical Process Control (MIA-MSPC) 

models achieved >95% accuracy in BF detection. 
• The improvement of MIA-MSPC was explored through Latent-Variable-based ML 

(LV-ML) models and the Variable-Selection-based Random Forest LV-ML (RF-VS-
LV-ML) strategy. 

• Partial Least Squares Regression (PLSR) combined with the Limited-memory 
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization method enabled multi-
objective hyperparameter tuning and facilitated the selection of the best ML model 
for maximizing BF detection performance. 

• The use of LV-ML and RF-VS-LV-ML significantly enhanced the detection of BF in 
poultry breast samples. 

• The RF-VS-LV-RF-FDA model achieved >99% accuracy in BF detection. 
• Ultrasound technology combined with MIA/ML provides a rapid, non-invasive, and 

non-destructive tool for statistical quality monitoring in foods. 
• Future research should focus on implementing this intelligent system for real-time 

quality inspection of chicken-based products in industrial inline settings.  
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LIST OF FIGURES 

Fig. 1. Flowchart of the main steps to prepare control and OC (out-of-control) samples. A, 
B, C and D for control images, furthermore C, B, E, F, G and H for OC images. 

Fig. 2. Equipment used for ultrasound image acquisition. It consisted of one computer (A), 
one oscilloscope (B), one generator-receiver (C), two ultrasonic transducers (D), food sample 
(E) and digital caliper (F). 

Fig. 3. Baseline correction of time-domain ultrasound signals (A) and energy-magnitude 
ultrasound parameters (B). 
 
Fig. 4. Flowchart illustrating the ultrasound-based feature extraction procedure and the 
methodological strategies implemented to identify the presence of bone fragments in out-of-
control (OC) samples using time-frequency domain approaches. 
 
Fig. 5. Statistical modeling procedure used for both unsupervised and supervised strategies 
in the detection of bone fragments in poultry meat. Analysis of different approaches time-
domain, frequency-domain and time-frequency-domain (A), unsupervised modeling using 
principal component analysis (PCA) and statistical optimization via Multivariate Statistical 
Process Control (MSPC) based Residual Sum Squares (RSS) and Hotelling’s T-square (T2) 
statistics (B) and supervised modeling and optimization based on Latent Variable-Machine 
Learning (LV-ML). 
 
Fig. 6. Statistical modeling procedure used to evaluate the feasibility of variable selection 
(VS) based on mean decrease in accuracy from a Random Forest (RF) model for tuning and 
optimizing supervised machine learning (ML) techniques. The analysis includes: time-
frequency-domain approaches (A), RF-based variable selection (RF-VS; B) and supervised 
modeling and optimization based on selected latent variables using machine learning (RF-
VS-LV-ML; C). 
 
Fig. 7. Statistical modeling procedure based Partial Least Squares Regression (PLSR) used 
in the multi-objective optimization of Latent Variable-Machine Learning (LV-ML) and 
Random Forest-Variable Selection-Latent Variable-Machine Learning (RF-VS-LV-ML) 
models. 
 
Fig. 8. Ultrasound signals and example of PP (peak-to-peak) image for detection of bone 
fragments within the center of chicken breast samples. Bone fragments of size 2.0 × 1.5 cm 
(A, D) and size of 2.0 × 1.0 cm (B, E), control sample image (C). 
 
Fig. 9. Ultrasound signals and example of PP (peak-to-peak) image for detection of bone 
fragments within the center of chicken breast samples. Bone fragments of size 1.5 × 0.3 cm 
(A, D), size of 1.0 × 0.3 cm (B, E) and size of 0.5 × 0.3 cm (C, F).  



 
 

 
 

Fig. 10. Example of the frequency spectrum of chicken breast samples with and without bone 
fragments. Bone fragments of size 2.0 × 1.5 cm (A), size of 2.0 × 1.0 cm (B), size 1.5 × 0.3 
cm (C), size of 1.0 × 0.3 cm (D) and size of 0.5 × 0.3 cm (E). 
 
Fig. 11. Classification performance of the multivariate control statistics used for detection of 
bone fragments in chicken breast. Average Acc for both RSS and T2 considering TDA (A, C), 
FDA (E, G) and TFDA (I, K) approaches. Average Se and Sp for both RSS and T2 
considering TDA (B, D), FDA (F, H) and TFDA (J, L) approaches. TDA (time-domain 
approach), FDA (frequency-domain approach), TFDA (time-frequency domain approach), 
Acc (overall accuracy), Se (sensibility), Sp (specificity), RSS (Residual Sum Squares) and T2 
(Hotelling’s T-squared). 
 
Fig. 12. Average Acc performance of RSS and T2 control statistics used for detection of bone 
fragments in chicken breast using different number of ultrasound images. Results for TDA 
(A), FDA (B) and TFDA (C). TDA (time-domain approach), FDA (frequency-domain 
approach), TFDA (time-frequency domain approach), Acc (overall accuracy), RSS (Residual 
Sum Squares) and T2 (Hotelling’s T-squared). 
 
Fig. 13. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-domain approach (TDA), shown as a function of the SVM 
hyperparameters and the number of latent variables (NLVs) tested. Results of overall 
accuracy (Acc) obtained with the “anovadot” kernel function are reported separately for the 
training (75%) and the validation (25%) datasets. 
 
Fig. 14. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the frequency-domain approach (FDA), shown as a function of the SVM 
hyperparameters and the number of latent variables (NLVs) tested. Results of overall 
accuracy (Acc) obtained with the “anovadot” kernel function are reported separately for the 
training (75%) and the validation (25%) datasets. 
 
Fig. 15. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-frequency-domain approach (TFDA), shown as a function of the 
SVM hyperparameters and the number of latent variables (NLVs) tested. Results of overall 
accuracy (Acc) obtained with the “anovadot” kernel function are reported separately for the 
training (75%) and the validation (25%) datasets. 
 
Fig. 16. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-frequency-domain approach-block-scale hard (TFDABH), shown 
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested. 
Results of overall accuracy (Acc) obtained with the “anovadot” kernel function are reported 
separately for the training (75%) and the validation (25%) datasets.  



 
 

 
 

Fig. 17. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-frequency-domain approach-block-scale soft (TFDABS), shown 
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested. 
Results of overall accuracy (Acc) obtained with the “anovadot” kernel function are reported 
separately for the training (75%) and the validation (25%) datasets. 
 
Fig. 18. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM) 
using the time-domain approach (TDA), shown as a function of the SVM hyperparameters 
and the number of latent variables (NLVs) tested. Results of CT are presented for the training 
(75%) dataset. 
 
Fig. 19. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM) 
using the frequency-domain approach (FDA), shown as a function of the SVM 
hyperparameters and the number of latent variables (NLVs) tested. Results of CT are 
presented for the training (75%) dataset. 
 
Fig. 20. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM) 
using the time-frequency-domain approach (TFDA), shown as a function of the SVM 
hyperparameters and the number of latent variables (NLVs) tested. Results of CT are 
presented for the training (75%) dataset. 
 
Fig. 21. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM) 
using the time-frequency-domain approach-block-scale hard (TFDABH), shown as a 
function of the SVM hyperparameters and the number of latent variables (NLVs) tested. 
Results of CT are presented for the training (75%) dataset. 
 
Fig. 22. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM) 
using the time-frequency-domain approach-block-scale soft (TFDABS), shown as a function 
of the SVM hyperparameters and the number of latent variables (NLVs) tested. Results of 
CT are presented for the training (75%) dataset.  
 
Fig. 23. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naïve Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis 
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent 
Variable-Generalized Linear Model (LV-GLM) using the time-domain approach (TDA), 
shown as a function of the ML hyperparameters and the number of latent variables (NLVs) 
tested. Results of overall accuracy (Acc) are reported separately for the training (75%) and 
the validation (25%) datasets.  



 
 

 
 

Fig. 24. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naïve Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis 
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent 
Variable-Generalized Linear Model (LV-GLM) using the frequency-domain approach 
(FDA), shown as a function of the ML hyperparameters and the number of latent variables 
(NLVs) tested. Results of overall accuracy (Acc) are reported separately for the training (75%) 
and the validation (25%) datasets. 
 
Fig. 25. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naïve Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis 
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent 
Variable-Generalized Linear Model (LV-GLM) using the time-frequency-domain approach 
(TFDA), shown as a function of the ML hyperparameters and the number of latent variables 
(NLVs) tested. Results of overall accuracy (Acc) are reported separately for the training (75%) 
and the validation (25%) datasets. 
 
Fig. 26. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naïve Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis 
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent 
Variable-Generalized Linear Model (LV-GLM) using the time-frequency-domain approach-
block-scale hard (TFDABH), shown as a function of the ML hyperparameters and the number 
of latent variables (NLVs) tested. Results of overall accuracy (Acc) are reported separately 
for the training (75%) and the validation (25%) datasets. 
 
Fig. 27. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naïve Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis 
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent 
Variable-Generalized Linear Model (LV-GLM) using the time-frequency-domain approach-
block-scale soft (TFDABS), shown as a function of the ML hyperparameters and the number 
of latent variables (NLVs) tested. Results of overall accuracy (Acc) are reported separately 
for the training (75%) and the validation (25%) datasets. 
 
Fig. 28. Computational time (CT) of the Latent Variable-Random Forest (LV-RF), Latent 
Variable-Naïve Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis (LV-LDA), 
Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent Variable-
Generalized Linear Model (LV-GLM) using the time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain 
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale 
soft (TFDABS), shown as a function of the ML hyperparameters and the number of latent 
variables (NLVs) tested. Results of CT are reported for the training (75%) dataset.  



 
 

 
 

Fig. 29. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-domain 
approach (TDA), shown as a function of the SVM hyperparameters. Results of overall 
accuracy (Acc) are reported as a mean ± standard deviation separately for the training (75%) 
and the validation (25%) datasets. Furthermore, computational time (CT) is also presented a 
mean ± standard deviation for the training process. Kernel functions (rbfdot, polydot, 
laplacedot, vanilladot, besseldot, and anovadot), SVM’ type (C-svc and nu-svc) and 
regularization parameter (C; 100, 500.5, and 1000). 
 
Fig. 30. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the frequency-domain 
approach (FDA), shown as a function of the SVM hyperparameters. Results of overall 
accuracy (Acc) are reported as a mean ± standard deviation separately for the training (75%) 
and the validation (25%) datasets. Furthermore, computational time (CT) is also presented a 
mean ± standard deviation for the training process. Kernel functions (rbfdot, polydot, 
laplacedot, vanilladot, besseldot, and anovadot), SVM’ type (C-svc and nu-svc) and 
regularization parameter (C; 100, 500.5, and 1000). 
 
Fig. 31. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-frequency-
domain approach (TFDA), shown as a function of the SVM hyperparameters. Results of 
overall accuracy (Acc) are reported as a mean ± standard deviation separately for the training 
(75%) and the validation (25%) datasets. Furthermore, computational time (CT) is also 
presented a mean ± standard deviation for the training process. Kernel functions (rbfdot, 
polydot, laplacedot, vanilladot, besseldot, and anovadot), SVM’ type (C-svc and nu-svc) and 
regularization parameter (C; 100, 500.5, and 1000). 
 
Fig. 32. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-frequency-
domain approach-block-scale hard (TFDABH), shown as a function of the SVM 
hyperparameters. Results of overall accuracy (Acc) are reported as a mean ± standard 
deviation separately for the training (75%) and the validation (25%) datasets. Furthermore, 
computational time (CT) is also presented a mean ± standard deviation for the training 
process. Kernel functions (rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot), 
SVM’ type (C-svc and nu-svc) and regularization parameter (C; 100, 500.5, and 1000). 
 
Fig. 33. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-frequency-
domain approach-block-scale soft (TFDABS), shown as a function of the SVM 
hyperparameters. Results of overall accuracy (Acc) are reported as a mean ± standard 
deviation separately for the training (75%) and the validation (25%) datasets. Furthermore, 
computational time (CT) is also presented a mean ± standard deviation for the training 
process. Kernel functions (rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot), 
SVM’ type (C-svc and nu-svc) and regularization parameter (C; 100, 500.5, and 1000). 



 
 

 
 

Fig. 34. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Random Forest (RF-VS-LV-RF) using the time-domain approach (TDA), 
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain 
approach-block-scale soft (TFDABS), shown as a function of the RF hyperparameters. 
Results of overall accuracy (Acc) are reported as a mean ± standard deviation separately for 
the training (75%) and the validation (25%) datasets. Additionally, computational time (CT) 
is also presented a mean ± standard deviation for the training process. DTe (decision tree), 
NTs (number of trees). 
 
Fig. 35. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Naïve Bayes (RF-VS-LV-NB) using the time-domain approach (TDA), 
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain 
approach-block-scale soft (TFDABS), shown as a function of the NB hyperparameters. 
Results of overall accuracy (Acc) are reported as a mean ± standard deviation separately for 
the training (75%) and the validation (25%) datasets. Additionally, computational time (CT) 
is also presented a mean ± standard deviation for the training process. LS (Laplace 
Smoothing). 
 
Fig. 36. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Linear Discriminant Analysis (RF-VS-LV-LDA), Random Forest-Variable 
Selection-Latent Variable-Quadratic Discriminant Analysis (RF-VS-LV-QDA) and Random 
Forest-Variable Selection-Latent Variable-Generalized Linear Model Analysis (RF-VS-LV-
GLM) using the time-domain approach (TDA), frequency-domain approach (FDA), time-
frequency-domain approach (TFDA), time-frequency-domain approach-block-scale hard 
(TFDABH) and time-frequency-domain approach-block-scale soft (TFDABS). Results of 
overall accuracy (Acc) are reported as a mean ± standard deviation separately for the training 
(75%) and the validation (25%) datasets. Additionally, computational time (CT) is also 
presented a mean ± standard deviation for the training process. 
 
Fig. 37. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Support Vector Machines (LV-SVM) 
model considering simultaneously the data approach: time-domain approach (TDA), 
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain 
approach-block-scale soft (TFDABS), and the SVM’s hyperparameters and number of latent 
variables (NLVs). NPLSR (computed number of PLSR components), R2 (coefficient of 
determination for training dataset), Q2 (coefficient of determination for K-Fold cross 
validation dataset), RMSETR (root mean square error for training dataset), RMSECV (root 
mean square error for K-Fold cross validation dataset), RSS (residual sum squares), T2 
(Hotelling’s T-squared), VIP (variable Importance for the projection), KF (kernel functions; 
rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot), type (C-svc and nu-svc), C 
(regularization parameter; 100, 500.5, and 1000), AccT (overall accuracy for training dataset), 



 
 

 
 

AccV (overall accuracy for validation dataset), SeT (sensibility for training dataset), SeV 

(sensibility for validation dataset), SpT (specificity for training dataset), SpV (specificity for 
validation dataset), PrT (precision for training dataset), PrV (precision for validation dataset), 
ReT (recall for training dataset), ReV (recall for validation dataset), FsT (F-score for training 
dataset), FsV (F-score for validation dataset), AUCT (area under the Receiver Operating 
Characteristic curve for training dataset), AUCT (area under the Receiver Operating 
Characteristic curve for validation dataset), MCCT (Matthews correlation coefficient for 
training dataset) and MCCV (Matthews correlation coefficient for validation dataset). 
 
Fig. 38. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Support Vector Machines (LV-SVM) 
model considering simultaneously the data approach: time-domain approach (TDA), 
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain 
approach-block-scale soft (TFDABS), and the SVM’s hyperparameters and number of latent 
variables (NLVs). Results of the PLSR model are presented for the screened model; regressor 
variables with VIP values lower than 0.5 were removed to improve model robustness. NPLSR 
(computed number of PLSR components), R2 (coefficient of determination for training 
dataset), Q2 (coefficient of determination for K-Fold cross validation dataset), RMSETR (root 
mean square error for training dataset), RMSECV (root mean square error for K-Fold cross 
validation dataset), RSS (residual sum squares), T2 (Hotelling’s T-squared), VIP (variable 
Importance for the projection), KF (kernel functions; rbfdot, polydot, laplacedot, vanilladot, 
besseldot, and anovadot), type (C-svc and nu-svc), C (regularization parameter; 100, 500.5, 
and 1000), AccT (overall accuracy for training dataset), AccV (overall accuracy for validation 
dataset), SeT (sensibility for training dataset), SeV (sensibility for validation dataset), SpT 

(specificity for training dataset), SpV (specificity for validation dataset), PrT (precision for 
training dataset), PrV (precision for validation dataset), ReT (recall for training dataset), ReV 
(recall for validation dataset), FsT (F-score for training dataset), FsV (F-score for validation 
dataset), AUCT (area under the Receiver Operating Characteristic curve for training dataset), 
AUCT (area under the Receiver Operating Characteristic curve for validation dataset), MCCT 
(Matthews correlation coefficient for training dataset) and MCCV (Matthews correlation 
coefficient for validation dataset).  



 
 

 
 

Fig. 39. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Random Forest (LV-RF) model 
considering simultaneously the data approach: time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain 
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale 
soft (TFDABS), and the RF’s hyperparameters and number of latent variables (NLVs). 
Results of the PLSR model are presented for the screened model; regressor variables with 
VIP values lower than 0.5 were removed to improve model robustness. NPLSR (computed 
number of PLSR components), R2 (coefficient of determination for training dataset), Q2 
(coefficient of determination for K-Fold cross validation dataset), RMSETR (root mean square 
error for training dataset), RMSECV (root mean square error for K-Fold cross validation 
dataset), RSS (residual sum squares), T2 (Hotelling’s T-squared), VIP (variable Importance 
for the projection), DTe (decision tree), NTs (number of trees; 50, 500 1000 5000 10000), 
AccT (overall accuracy for training dataset), AccV (overall accuracy for validation dataset), SeT 

(sensibility for training dataset), SeV (sensibility for validation dataset), SpT (specificity for 
training dataset), SpV (specificity for validation dataset), PrT (precision for training dataset), 
PrV (precision for validation dataset), ReT (recall for training dataset), ReV (recall for 
validation dataset), FsT (F-score for training dataset), FsV (F-score for validation dataset), 
AUCT (area under the Receiver Operating Characteristic curve for training dataset), AUCT 
(area under the Receiver Operating Characteristic curve for validation dataset), MCCT 
(Matthews correlation coefficient for training dataset) and MCCV (Matthews correlation 
coefficient for validation dataset). 
 
Fig. 40. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Naïve Bayes (LV-NB) model 
considering simultaneously the data approach: time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain 
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale 
soft (TFDABS), and the NB’s hyperparameters and number of latent variables (NLVs). 
Results of the PLSR model are presented for the screened model; regressor variables with 
VIP values lower than 0.5 were removed to improve model robustness. NPLSR (computed 
number of PLSR components), R2 (coefficient of determination for training dataset), Q2 
(coefficient of determination for K-Fold cross validation dataset), RMSETR (root mean square 
error for training dataset), RMSECV (root mean square error for K-Fold cross validation 
dataset), RSS (residual sum squares), T2 (Hotelling’s T-squared), VIP (variable Importance 
for the projection), AccV (overall accuracy for validation dataset), SeT (sensibility for training 
dataset), SeV (sensibility for validation dataset), SpT (specificity for training dataset), SpV 

(specificity for validation dataset), PrT (precision for training dataset), PrV (precision for 
validation dataset), ReT (recall for training dataset), ReV (recall for validation dataset), FsT (F-
score for training dataset), FsV (F-score for validation dataset), AUCT (area under the Receiver 
Operating Characteristic curve for training dataset), AUCT (area under the Receiver 
Operating Characteristic curve for validation dataset), MCCT (Matthews correlation 
coefficient for training dataset) and MCCV (Matthews correlation coefficient for validation 
dataset). 



 
 

 
 

Fig. 41. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Linear Discriminant Analysis (LV-
LDA) model considering simultaneously the data approach: time-domain approach (TDA), 
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain 
approach-block-scale soft (TFDABS), and number of latent variables (NLVs). Results of the 
PLSR model are presented for the screened model; regressor variables with VIP values lower 
than 0.5 were removed to improve model robustness. NPLSR (computed number of PLSR 
components), R2 (coefficient of determination for training dataset), Q2 (coefficient of 
determination for K-Fold cross validation dataset), RMSETR (root mean square error for 
training dataset), RMSECV (root mean square error for K-Fold cross validation dataset), RSS 
(residual sum squares), T2 (Hotelling’s T-squared), VIP (variable Importance for the 
projection), AccV (overall accuracy for validation dataset), SeT (sensibility for training dataset), 
SeV (sensibility for validation dataset), SpT (specificity for training dataset), SpV (specificity 
for validation dataset), PrT (precision for training dataset), PrV (precision for validation 
dataset), ReT (recall for training dataset), ReV (recall for validation dataset), FsT (F-score for 
training dataset), FsV (F-score for validation dataset), AUCT (area under the Receiver 
Operating Characteristic curve for training dataset), AUCT (area under the Receiver 
Operating Characteristic curve for validation dataset), MCCT (Matthews correlation 
coefficient for training dataset) and MCCV (Matthews correlation coefficient for validation 
dataset). 
 
Fig. 42. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Quadratic Discriminant Analysis (LV-
QDA) model considering simultaneously the data approach: time-domain approach (TDA), 
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain 
approach-block-scale soft (TFDABS), and number of latent variables (NLVs). Results of the 
PLSR model are presented for the screened model; regressor variables with VIP values lower 
than 0.5 were removed to improve model robustness. NPLSR (computed number of PLSR 
components), R2 (coefficient of determination for training dataset), Q2 (coefficient of 
determination for K-Fold cross validation dataset), RMSETR (root mean square error for 
training dataset), RMSECV (root mean square error for K-Fold cross validation dataset), RSS 
(residual sum squares), T2 (Hotelling’s T-squared), VIP (variable Importance for the 
projection), AccV (overall accuracy for validation dataset), SeT (sensibility for training dataset), 
SeV (sensibility for validation dataset), SpT (specificity for training dataset), SpV (specificity 
for validation dataset), PrT (precision for training dataset), PrV (precision for validation 
dataset), ReT (recall for training dataset), ReV (recall for validation dataset), FsT (F-score for 
training dataset), FsV (F-score for validation dataset), AUCT (area under the Receiver 
Operating Characteristic curve for training dataset), AUCT (area under the Receiver 
Operating Characteristic curve for validation dataset), MCCT (Matthews correlation 
coefficient for training dataset) and MCCV (Matthews correlation coefficient for validation 
dataset). 



 
 

 
 

Fig. 43. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Generalized Linear Model (LV-GLM) 
considering simultaneously the data approach: time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain 
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale 
soft (TFDABS), and number of latent variables (NLVs). Results of the PLSR model are 
presented for the screened model; regressor variables with VIP values lower than 0.5 were 
removed to improve model robustness. NPLSR (computed number of PLSR components), 
R2 (coefficient of determination for training dataset), Q2 (coefficient of determination for K-
Fold cross validation dataset), RMSETR (root mean square error for training dataset), 
RMSECV (root mean square error for K-Fold cross validation dataset), RSS (residual sum 
squares), T2 (Hotelling’s T-squared), VIP (variable Importance for the projection), AccV 

(overall accuracy for validation dataset), SeT (sensibility for training dataset), SeV (sensibility 
for validation dataset), SpT (specificity for training dataset), SpV (specificity for validation 
dataset), PrT (precision for training dataset), PrV (precision for validation dataset), ReT (recall 
for training dataset), ReV (recall for validation dataset), FsT (F-score for training dataset), FsV 
(F-score for validation dataset), AUCT (area under the Receiver Operating Characteristic 
curve for training dataset), AUCT (area under the Receiver Operating Characteristic curve for 
validation dataset), MCCT (Matthews correlation coefficient for training dataset) and MCCV 

(Matthews correlation coefficient for validation dataset). 
 
Fig. 44. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Random Forest-Variable Selection-Latent Variable-
Support Vector Machines (RF-VS-LV-SVM) model considering simultaneously the data 
approach: time-domain approach (TDA), frequency-domain approach (FDA), time-
frequency-domain approach (TFDA), time-frequency-domain approach-block-scale hard 
(TFDABH) and time-frequency-domain approach-block-scale soft (TFDABS) and the 
SVM’s hyperparameters. Results of the PLSR model are presented for the screened model; 
regressor variables with VIP values lower than 0.5 were removed to improve model 
robustness. NPLSR (computed number of PLSR components), R2 (coefficient of 
determination for training dataset), Q2 (coefficient of determination for K-Fold cross 
validation dataset), RMSETR (root mean square error for training dataset), RMSECV (root 
mean square error for K-Fold cross validation dataset), RSS (residual sum squares), T2 
(Hotelling’s T-squared), VIP (variable Importance for the projection), KF (kernel functions; 
rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot), type (C-svc and nu-svc), C 
(regularization parameter; 100, 500.5, and 1000), AccT (overall accuracy for training dataset), 
AccV (overall accuracy for validation dataset), SeT (sensibility for training dataset), SeV 

(sensibility for validation dataset), SpT (specificity for training dataset), SpV (specificity for 
validation dataset), PrT (precision for training dataset), PrV (precision for validation dataset), 
ReT (recall for training dataset), ReV (recall for validation dataset), FsT (F-score for training 
dataset), FsV (F-score for validation dataset), AUCT (area under the Receiver Operating 
Characteristic curve for training dataset), AUCT (area under the Receiver Operating 
Characteristic curve for validation dataset), MCCT (Matthews correlation coefficient for 
training dataset) and MCCV (Matthews correlation coefficient for validation dataset). 



 
 

 
 

Fig. 45. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Random Forest-Variable Selection-Latent Variable-
Random Forest (RF-VS-LV-RF) model considering simultaneously the data approach: time-
domain approach (TDA), frequency-domain approach (FDA), time-frequency-domain 
approach (TFDA), time-frequency-domain approach-block-scale hard (TFDABH) and time-
frequency-domain approach-block-scale soft (TFDABS) and the RF’s hyperparameters. 
Results of the PLSR model are presented for the screened model; regressor variables with 
VIP values lower than 0.5 were removed to improve model robustness. NPLSR (computed 
number of PLSR components), R2 (coefficient of determination for training dataset), Q2 
(coefficient of determination for K-Fold cross validation dataset), RMSETR (root mean square 
error for training dataset), RMSECV (root mean square error for K-Fold cross validation 
dataset), RSS (residual sum squares), T2 (Hotelling’s T-squared), VIP (variable Importance 
for the projection), DTe (decision tree), NTs (number of trees; 50, 500, 1000, 5000 and 
10000), AccT (overall accuracy for training dataset), AccV (overall accuracy for validation 
dataset), SeT (sensibility for training dataset), SeV (sensibility for validation dataset), SpT 

(specificity for training dataset), SpV (specificity for validation dataset), PrT (precision for 
training dataset), PrV (precision for validation dataset), ReT (recall for training dataset), ReV 
(recall for validation dataset), FsT (F-score for training dataset), FsV (F-score for validation 
dataset), AUCT (area under the Receiver Operating Characteristic curve for training dataset), 
AUCT (area under the Receiver Operating Characteristic curve for validation dataset), MCCT 
(Matthews correlation coefficient for training dataset) and MCCV (Matthews correlation 
coefficient for validation dataset). 
 
Fig. 46. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of the optimized Latent Variable-Support Vector Machines 
(LV-SVM), Latent Variable-Random Forest (LV-RF), Latent Variable-Naïve Bayes (LV-
NB), Latent Variable-Linear Discriminant Analysis (LV-LDA), Latent Variable-Quadratic 
Discriminant Analysis (LV-QDA), Latent Variable-Generalized Linear Model (LV-GLM), 
Random Forest-Variable Selection-Latent Variable-Support Vector Machines (RF-VS-LV-
SVM), Random Forest-Variable Selection-Latent Variable-Random Forest (RF-VS-LV-RF), 
Random Forest-Variable Selection-Latent Variable-Naïve Bayes (RF-VS-LV-NB), Random 
Forest-Variable Selection-Latent Variable- Linear Discriminant Analysis (RF-VS-LV-
LDA), Random Forest-Variable Selection-Latent Variable- Quadratic Discriminant Analysis 
(RF-VS-LV-QDA) and Random Forest-Variable Selection-Latent Variable- Generalized 
Linear Model (RF-VS-LV-GLM) models. NPLSR (computed number of PLSR components), 
R2 (coefficient of determination for training dataset), Q2 (coefficient of determination for K-
Fold cross validation dataset), RMSETR (root mean square error for training dataset), 
RMSECV (root mean square error for K-Fold cross validation dataset), RSS (residual sum 
squares), T2 (Hotelling’s T-squared), VIP (variable Importance for the projection), AccT 

(overall accuracy for training dataset), AccV (overall accuracy for validation dataset), SeT 

(sensibility for training dataset), SeV (sensibility for validation dataset), SpT (specificity for 
training dataset), SpV (specificity for validation dataset), PrT (precision for training dataset), 
PrV (precision for validation dataset), ReT (recall for training dataset), ReV (recall for 
validation dataset), FsT (F-score for training dataset), FsV (F-score for validation dataset), 



 
 

 
 

AUCT (area under the Receiver Operating Characteristic curve for training dataset), AUCT 
(area under the Receiver Operating Characteristic curve for validation dataset), MCCT 
(Matthews correlation coefficient for training dataset) and MCCV (Matthews correlation 
coefficient for validation dataset). 
 
Fig. 47. Optimal Latent Variables (LVs) selected using the Mean Decrease Accuracy (MDA, 
%) criterion from the Random Forest (RF) model. This eigenspace was employed for 
calibration and validation of the Random Forest-Variable Selection-Latent Variable-Random 
Forest (RF-VS-LV-RF) framework. Using frequency-domain (FDA) features to feed the RF-
VS-LV-RF yielded the best-performing optimized model (RF-VS-LV-RF-FDA). Variable 
importance of each LV in maximizing sample classification (with vs. without bone 
fragments) according to RF accuracy (A). Loading plots of the 30 most important FDA 
energy-magnitude-distribution ultrasound parameters ranked by MDA (B to H). Parameters 
include M0 (zero-order moment), Fr (center frequency of the phase spectrum), MP (maximum 
peak of the frequency spectrum), VARsp (spectral variance of the phase spectrum), SKEsp 

(spectral skewness of the phase spectrum), KURsp (spectral kurtosis of the phase spectrum), 
and ENTsp (spectral entropy of the phase spectrum). 
 
Fig. 48. Three-dimensional score plots of the nine most important Latent Variables (LVs; 
Fig. 47) selected by the Mean Decrease Accuracy (MDA) criterion from the Random Forest-
Variable selection (RF-VS) strategy. Panels (A to C) show representative combinations of 
principal components (PCs) derived from the frequency-domain (FDA) features, while panel 
(D) presents the two-dimensional score projection of PC70 vs PC1 for clustering comparison. 
Sample groups correspond to Control and different bone fragment defect sizes (2.0×1.5 cm, 
2.0×1.0 cm, 1.5×0.3 cm, 1.0×0.3 cm, and 0.5 × 0.3 cm). This selected eigenspace was used 
to feed the RF-VS-LV-RF yielded the best-performing optimized model (RF-VS-LV-RF-
FDA). 
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Fig. 1S. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-domain approach (TDA), shown as a function of the SVM 
hyperparameters and the number of latent variables (NLVs) tested. Results of overall 
accuracy (Acc) are reported separately for the training (75%) and the validation (25%) 
datasets. 
 
Fig. 2S. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the frequency-domain approach (FDA), shown as a function of the SVM 
hyperparameters and the number of latent variables (NLVs) tested. Results of overall 
accuracy (Acc) are reported separately for the training (75%) and the validation (25%) 
datasets. 

  



 
 

 
 

Fig. 3S. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-frequency-domain approach (TFDA), shown as a function of the 
SVM hyperparameters and the number of latent variables (NLVs) tested. Results of overall 
accuracy (Acc) are reported separately for the training (75%) and the validation (25%) 
datasets. 
 
Fig. 4S. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-frequency-domain approach-block-scale hard (TFDABH), shown 
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested. 
Results of overall accuracy (Acc) are reported separately for the training (75%) and the 
validation (25%) datasets. 
 
Fig. 5S. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-frequency-domain approach-block-scale soft (TFDABS), shown 
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested. 
Results of overall accuracy (Acc) are reported separately for the training (75%) and the 
validation (25%) datasets.  
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1. Introduction  
 
The poultry meat industry has undergone a rapid expansion in recent years, and it is currently 
the most produced meat worldwide (Aggrey et al., 2023; Fang et al., 2023). The consumption 
of poultry meat is increasing, due to its affordability, high nutritional value, and the large 
variety of derived processed products (Jiang et al., 2018). However, poultry meat production 
encounters several challenges, primarily related to disease management and the assurance of 
product quality and safety. Moreover, another significant concern is the presence of foreign 
bodies (FBs) in the final manufactured products.  

Physical contamination resulting from the presence of FBs in food products poses significant 
health risks to consumers and can harm a company’s reputation and legal compliance, since 
it has been recognized as the primary source of consumers’ complaints received by food 
manufacturing companies (Edward and Stringer, 2007). In fact, consumer tolerance for any 
form of food contamination is decreasing, particularly for FBs such as wood, metal 
fragments, plastic particles, and bone fragments, as FBs may carry pathogens and 
microorganisms or cause physical harm when ingested (Djekic et al., 2017). 

The detection of FBs represents a crucial bottleneck in the management of food safety and 
quality within poultry meat industry (Nielsen et al., 2013), and, in particular, bone fragment 
(BF) detection is a persistent problem. During the rapid mechanical deboning process, 
industrial machinery separates chicken breasts from the skeleton, which can result in bone 
fragments becoming embedded in the fillets. Detecting these fragments in-line and real-time 
is critical to ensure consumer’ safety. Therefore, there is an urgent need for non-invasive, 
cost-effective, and intelligent systems for real-time meat product quality and safety 
monitoring; but still, the automation of the food manufacturing process remains a formidable 
challenge (Ali and Hashim, 2021). In this context, achieving automatic and dependable 
detection of FBs stands as a primary objective for the meat industry among the ongoing 
digital revolution, the incorporation of resilient industrial sensors and computer-assisted 
algorithms to facilitate real-time decision-making is essential (Belaud et al., 2019). 

Traditional analytical techniques relying on electromagnetic radiation, including magnetic 
detectors, X-rays, and hyperspectral sensors, have been extensively used in the detection of 
FBs within food products (Yaqoob et al., 2021). These methods come with certain limitations 
for food inspection, such as the high cost of the equipment and its maintenance, challenges 
associated with their integration into food processing lines, and, in some cases, limited 
penetration capability to thoroughly analyze the internal structure of food (Pérez-
Santaescolástica et al., 2019).  

Regarding the detection of BFs in the meat industry, Yoon et al. (2007) employed a system 
based on Near-Infrared (NIR) spectroscopy for detecting BFs in chicken breast samples, 
while McFarlane et al. (2003) successfully utilized the X-ray backscatter technique to identify 
chicken clavicles and near-surface bone pieces in chicken breast pieces. Further, Lim et al. 
(2022) tested the X-ray imaging technique to detect soft plastic bullets within chicken breast 
samples, representing an improvement over conventional X-ray methods, which cannot 
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discern soft FBs. Nevertheless, X-ray-based methods, in general, are characterized by a 
significant drawback: they are expensive to operate, need costly equipment, pose risks to 
operators, and require complex post-image processing (McFarlane et al., 2003).  

Ultrasound technology (US) has been employed as a valuable tool for the non-destructive 
testing of food materials. Ultrasound offers advantages over the aforementioned 
technologies: it enables faster inspection, it is cost-efficient, versatile, easy to manipulate, 
safe for personnel, and suitable for real-time in-line application (Fariñas et al., 2021), which 
is in accordance with the goals set by the Fourth Industrial Revolution (Industry 4.0) (Fariñas 
et al., 2023).  

Consequently, US has emerged as a promising technology for detecting FB in foods. In the 
food industry, the conventional method for analyzing food products and processes relies on 
the contact ultrasonics (CUS) technology. In CUS, sensors require close contact with the food 
material to eliminate air gaps at the sensor-sample interface and enhance energy transfer into 
the sample. This contact is achieved through the use of coupling materials such as water, oil, 
or glycerine (Sánchez-Jiménez et al., 2023).  

More recently, non-contact ultrasonics (NCUS) technology has gained recognition in the 
food industry and is considered highly suitable for non-destructive analysis of food products 
(Fariñas et al., 2021). Although this technology is still in the development phase for its 
industrial application, it shows great promise for future in-line applications, particularly in 
the detection of FBs. 

In the meat sector, the CUS measurements have been satisfactorily employed for monitoring 
the physicochemical modifications in beef steaks during the dry salting process (Fariñas et 
al., 2023), for on-line monitoring of the ham salting process (García-Pérez et al., 2019) or for 
the characterization of dry-cured ham (Corona et al., 2013), among other applications. 
Regarding the detection of BF, Correia et al. (2008) designed and assembled an ultrasonic 
system based on CUS in pulse-echo mode to detect bone fragments in mechanically deboned 
chicken breasts. The effectiveness of their system for detecting BFs of different sizes was 
evaluated, showing an acceptable detection of fragments ranging from 6 mm2 to 16 mm2, 
based on attenuation values. However, the authors claimed important limitations in the 
application of their apparatus, being the primary drawback the significant variation in the 
obtained amplitude ratio values, leading to inconsistent and unreliable measurements. To 
solve this problem, another ultrasonic sensing modes such as through-transmission and pitch 
and catch can also be assessed (Mohd Khairi et al., 2015). 

An additional benefit of US lies in its capacity for spatial analysis of food products by creating 
ultrasound imaging (USI). USI serves as a valuable non-destructive tool for inspecting food 
by scanning the surface of the product (Gan, 2020). It offers a spatial representation of 
internal characteristics, facilitating the evaluation of physicochemical attributes related to 
composition, texture or internal irregularities. The applicability of ultrasound imaging (USI) 
for identifying internal gas pockets and defects (such as cracks) was assessed in Swiss-Type 
Cheese by Eskelinen et al. (2007). Consequently, the potential of USI can also be explored 
for the detection of BF within chicken breasts, regardless of their specific location. 
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The massive volume of data generated by using US sensors in real-time requires robust 
mathematical models to extract relevant information from ultrasonic signals. In this sense, 
pattern recognition techniques constitute an advanced tool that is embraced by Industry 4.0 
in the context of digitalization purposes (Ozturk et al., 2023). Many complex decision-
making processes are involved in the food manufacturing processes. Thus, food industry can 
definitely benefit from these mathematical tools (Ni et al., 2020).  

Pattern recognition based-models are mainly classified into two categories: unsupervised 
techniques such as the Principal Component Analysis (PCA) and hierarchical cluster analysis 
(HCA); and supervised techniques such as Linear Discriminant Analysis (LDA), Quadratic 
Discriminant Analysis (QDA), Generalized Linear Model (GLM), Partial Least Squares 
(PLS), and Soft Independent Modelling by Class Analogy (SIMCA). Additionally, in the 
machine learning (ML) field, supervised algorithms for regression and classification 
(decision trees-DTe, Random Forest-RF, Support Vector Machine-SVM, k-nearest-
neighbors-kNN, Naïve Bayes-NB, among others) are also used (Jiménez-Carvelo et al., 
2019).  

The Principal Component Analysis (PCA) is one of the most important mathematical 
technique used in the manufacturing and process industries (Macgregor and Kourti, 1995). It 
is a statistical method used to simplify complex datasets by reducing their dimensionality. It 
achieves this by applying an orthogonal transformation that converts a group of possibly 
correlated variables into a new set of variables that are linearly independent from one another, 
referred to as principal components (Li et al., 2025). PCA is one of the most established 
techniques for exploratory data analysis in chemometrics (Godoy et al., 2014). Its ability to 
capture the main sources of variance within multivariate datasets, especially those with 
collinear variables or ill-conditioned matrices, makes it particularly suitable for applications 
involving high-dimensional ultrasonic or spectroscopic data (Sánchez-Jiménez et al., 2023). 
By projecting the original observations into a reduced latent space defined by uncorrelated 
principal components, PCA simplifies complex datasets and enhances interpretability, while 
also enabling the development of a statistical model for process monitoring and defect 
detection (Villalba et al., 2019). 

In this sense, Statistical Process Control (SPC) has become a key methodology in 
manufacturing and process industries for tracking process behavior over time. Its main goal 
is to ensure that critical variables remain within acceptable limits, indicating that the process 
operates under statistical control (where only inherent), common-cause variation is present. 
Tools such as Shewhart, Cumulative Sum (CUSUM), and Exponentially Weighted Moving 
Average (EWMA) control charts are employed to detect deviations caused by special or 
assignable causes. Identifying and addressing these causes enables sustained process and 
quality improvements through corrective actions or operational adjustments. Conventional 
Multivariate Statistical Process Control (MSPC) techniques aim to track the stability of the 
process mean by constructing control charts based on Hotelling’s T-square statistic derived 
from the original set of measured variables. This method assumes a fixed covariance structure 
and requires the inversion of the estimated covariance matrix, which becomes problematic 
when the number of variables approaches or exceeds the number of observations (common 
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in modern industrial data-rich environments). Additionally, these approaches rely on 
complete, noise-free datasets, a condition often unmet in automated industrial settings. 
Therefore, the MSPC faces limitations in scalability and robustness when applied to high-
dimensional or incomplete process data, restricting its practical deployment in complex 
manufacturing systems (Villalba et al., 2019). 

The use of PCA in the MSPC framework represents an important advantage since it avoids 
the computational and practical limitations associated with traditional SPC that require 
inversion of high-dimensional covariance matrices. By projecting the original correlated 
variables onto a reduced latent space composed of a few principal components, PCA 
simplifies the monitoring task while preserving the essential variance structure of the process. 
Control charts developed in this low-dimensional subspace function as multivariate process 
performance indices, offering a clear and interpretable representation similar to univariate 
SPC charts. At the same time, they leverage the full multivariate information, resulting in 
greater sensitivity to process anomalies. Furthermore, this approach is inherently more robust 
to missing or noisy data, making it highly suitable for complex, automated environments 
(Babamoradi et al., 2013). 

In the PCA-MSPC, the monitoring of process deviations is performed using a limited number 
of principal components to construct the Hotelling’s T-square statistic in the reduced latent 
space. This statistic quantifies deviations in the most informative principal variables , which 
capture the dominant sources of variation within the process. However, since Hotelling’s T-
square at each component reflects only the variability within the subspace defined by the 
retained principal components, it is complemented by the Residual Sum Square statistic, 
which measures the residual variation orthogonal to this subspace. By using both Hotelling’s 
T-square and Residual Sum Square in a dual-chart monitoring strategy, enhances the fault 
detection in multivariate systems (Lemaigre et al., 2016). PCA-MSPC has been successfully 
applied to various food-related monitoring tasks, including the supervision of wine quality 
during fermentation (Cavaglia et al., 2020), the detection of melamine adulteration in milk 
through vibrational spectroscopy (Fernández Pierna et al., 2016), and the authentication of 
food products based on multivariate profiles (Preys et al., 2007). The authors reported that 
the PCA-MSPC approach demonstrated high computational efficiency suitable for online 
implementation, providing a robust and practical tool for real-time process monitoring and 
detection of anomalies in agro-food systems. 

The data used in food industry analysis ranges from unstructured (text, audio, video, images 
and among others) to highly structured data (relational databases, spreadsheets, CSV files, 
among others) (Jin et al., 2020). Due to the demonstrated robustness of PCA in food quality 
inspection, this method facilitates the analysis of unstructured datasets (such as USIs) within 
the framework of Multivariate Image Analysis (MIA). MIA involves the application of 
multivariate techniques to extract both spectral and spatial information from images (Prats-
Montalbán et al., 2011). This approach involves applying PCA to an unfolded multivariate 
image, resulting in an unsupervised classification of image pixels based on their spectral 
characteristics, which are represented in the PCA score space. The extracted information is 
subsequently analyzed by iteratively segmenting regions of interest within the PCA score 
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space and mapping the corresponding pixels back onto the original image. This procedure, 
commonly known as masking, enables the identification and extraction of relevant spectral 
features from the image (Duchesne et al., 2012). 

MIA is useful as an explorative technique, clustering, defect detection and MSPC (Prats-
Montalbán et al., 2009). MIA-MSPC can be applied twofold depending on the goal in hand: 
the first approach operates at the pixel level, requiring the monitoring and/or detection of 
defects or phenomena occurring within the individual captured images and the second 
approach entails process control based on the analysis of the image as a whole. Regardless 
the approach and following the MIA-MSPC framework, the first step involves calibrating a 
PCA model using a set of images corresponding to Normal Operating Conditions (NOC or 
Control), those acquired under the assumption that the process is functioning correctly. From 
this reference model, two key statistics such as Hotelling’s T-square and Residual Sum 
Squares can be computed from the scores and residuals, respectively. Then, once a PCA 
model has been built on some NOC images and the Hotelling’s T-square and Residual Sum 
Squares control limits have been established, the pixels of new images can be projected onto 
the calibrated PCA model. In this way, it becomes possible to identify which pixels exceed 
the statistical thresholds of model. Within this context, rather than visualizing the full 
Hotelling’s T-square and Residual Sum Squares images, it is more informative to highlight 
only those pixels that exhibit extreme behavior within the model (exceeding the Hotelling’s 
T-square limit) or that fall outside the model (surpassing the Residual Sum Squares limit) 
(Prats-Montalbán et al., 2011). The feasibility of MIA-MSPC has been demonstrated in 
several works including the monitoring of colour random texture (Reis, 2015), the on-line 
monitoring of a freeze-drying process for pharmaceutical products in vials (Colucci et al., 
2019) and the defect Detection in Random Colour Textures (López et al., 2006). 

The PLS model is another well-kwon advanced multivariate statistical tool widely used in 
chemometrics for performing multivariate regression/classification. PLS is an iterative 
method for finding latent variables that maximize covariance between the input and response 
variables (Duma et al., 2024). Although PLS is also commonly latent-structure based model 
used in multivariate process monitoring (especially when there is a known response variable), 
PCA is often preferred when the objective is unsupervised (no response variable is available) 
defect detection, data visualization, or latent space modeling without requiring prior class 
information images (Prats-Montalbán et al., 2011). In any case, if both process variables and 
product quality data are available, multivariate statistical predictive models based on 
projection to latent structures, such as PLS, can also be employed (Prats-Montalbán et al., 
2012; Villalba et al., 2019). 

Since the detection of BFs in the poultry meat industry is an unsupervised, data-driven task 
(due to the lack of prior labeling of samples) MIA-MSPC based on PCA emerges as the most 
suitable approach. In fact, MIA-MSPC based on PCA results in the detection of BF of 
different sizes within chicken breast samples using USI have been previously reported by 
Collazos-Escobar et al. (2025). The authors reported that USI obtained by CUS enable the 
detection of BF through statistically significant changes in both energy-magnitude and 
energy-distribution ultrasound parameters at the USI pixel level, highlighting their influence 
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on signal attenuation, spectral features, and variability depending on fragment size. The MIA-
MSPC demonstrated the feasibility of using both Hotelling’s T-square and Residual Sum 
Squares statistics for the detection of BF, achieving an overall accuracy greater than 95%.  

Additionally, the authors acknowledged that supervised pattern recognition approaches could 
potentially be explored to enhance detection performance. Although these techniques have 
shown promise in related applications (Bowler et al., 2023, 2020; Caladcad et al., 2020; 
Conde et al., 2008; Sánchez-Jiménez et al., 2023; Velásquez et al., 2021b, 2019), their 
implementation requires additional steps, such as the definition of a latent variable space 
(from PCA as example) and careful tuning of hyperparameters to optimize model 
performance. As the BF detection problem is an inherently data-driven task, exploring 
alternative modeling strategies (including unsupervised/supervised machine learning 
techniques) may provide valuable insights and further improvements (Collazos-Escobar et 
al., 2023b). Thus, the analysis of whether supervised ML techniques can improve the results 
of an unsupervised model is a relevant matter of scientific interest. Nonetheless, every effort 
in exploring the balance between computational complexity and model’s likelihood should 
be considered in these modeling strategies. 

To elucidate whether the use of supervised ML techniques can improve upon the results 
previously obtained with MIA-MSPC based on PCA in the detection of BFs, various 
algorithms such as SVM, DTe, RF, NB, LDA, QDA, GLM and among others, can be 
assessed. The assessment of these models in the improvement of MIA-MSPC can be 
conducted using the MIA as the basis for ML’s model calibration. This procedure is 
commonly carried out by the use of PCA’s scores as features in the ML model tunning. This 
strategy has been successfully done in both prediction and classification tasks (Caladcad et 
al., 2020; Collazos-Escobar et al., 2024, 2023a; Conde et al., 2008; Barrios-Rodríguez et al., 
2021; Sánchez-Jiménez et al., 2023). Thereby, this procedure paves the way for the analysis 
and comparison between the two categories of pattern recognition based-models to address 
the same data-driven problem.  

In this sense, SVM have emerged as pivotal tools in ML. Its ability to handle high-
dimensional data efficiently, coupled with their applicability to both classification and 
regression tasks, makes SVM reliable for complex analytical challenges and data-driven 
tasks. SVM functions by identifying an optimal hyperplane that maximally separates data 
points belonging to different classes (Scatigno and Festa, 2022). In real-world datasets, which 
often exhibit overlapping classes, the soft-margin SVM formulation is employed. This 
approach introduces slack variables and a regularization parameter, allowing a trade-off 
between maximizing the margin and minimizing classification errors (Chauchard et al., 
2004). To handle non-linear patterns, SVMs utilize kernel functions that implicitly map input 
features into higher-dimensional spaces where linear separation becomes more feasible. 
Commonly used kernels include linear, polynomial, and radial basis function kernels. The 
choice of kernel and its associated hyperparameters significantly affects model performance 
and must be carefully optimized for the specific application (Scatigno and Festa, 2022). 

SVMs have been widely applied in the field of food science and engineering. For instance, 
SVM models have combined with near infrared spectroscopy techniques for acidity 
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prediction in grapes (Chauchard et al., 2004), in determining coconut maturity level 
integrating SVM and acoustic signals (Caladcad et al., 2020), in the classification of the 
maturity stage of coffee cherries (Velásquez et al., 2021b) and to quantify the influence of 
maturity stage on drying kinetics of coffee cherries (Velásquez et al., 2021a), in the rapid 
prediction and description of the moisture content changes in achira biscuits (Collazos-
Escobar et al., 2023b) and dried coffee beans during storage (Collazos-Escobar et al., 2025a, 
2025b). In all of these applications, the authors claimed that SVM was able in handling high 
dimensionality, complex and non-linearities datasets, shown promise in process improvement 
and real time decision-making in the food industry. 

Despite SVM’s advantages, these models have notable limitations. One of the most important 
limitation is that the training process on large-scale datasets can be computationally intensive, 
although recent advances in hardware and optimization algorithms have mitigated some of 
these concerns (Xu et al., 2025). Moreover, model performance is highly sensitive to the 
tuning of hyperparameters (such as the regularization parameter and kernel-specific 
parameters) which requires careful optimization, commonly achieved through grid search, 
cross-validation and strategies based on design of experiments (Collazos-Escobar et al., 
2025a). Another significant limitation of SVM is their limited interpretability, as they are 
often regarded as “black-box” models. This poses challenges in domains where 
understanding the contribution of individual features is essential for informed decision-
making. Nevertheless, their robustness, flexibility, and strong predictive performance 
continue to make SVMs a popular choice in analytical and chemometric applications (Zhu et 
al., 2024). 

Another relevant technique widely used in the field of supervised ML is the RF (Gholizadeh 
et al., 2020). RF have become a cornerstone in ML due to their robustness, versatility, and 
ability to handle high-dimensional data. RF has proven particularly effective for modeling 
complex datasets, supporting tasks such as classification, regression, and feature selection 
(Otchere, 2023). RF is a classification algorithm composed of an ensemble of DTe for both 
classification and regression tasks. A DTe is a hierarchical, tree-structured model that 
recursively partitions the feature space into disjoint regions based on feature-based decision 
rules. At each internal node, the algorithm selects a feature and a corresponding threshold 
that maximizes a splitting criterion, such as Gini impurity or information gain, thereby 
creating two or more nodes. This process continues recursively until a stopping condition is 
achieved (such as reaching a maximum depth, a minimum number of samples per node, or 
achieving complete purity in the leaf nodes). Each terminal node (leaf) assigns a class label 
in classification tasks or a numerical value in regression tasks, based on the majority class or 
average of the training samples contained in that node (Sun and Hu, 2017). 

As an ensemble method, RF constructs multiple DTe and aggregates their outputs (using 
majority voting for classification and averaging for regression) which enhances predictive 
accuracy and reduces the risk of overfitting (Yeap et al., 2020). This makes it especially 
suitable for the intricate and noisy datasets commonly encountered in real-scenarios. During 
training process, each tree is built from a bootstrap sample of the original dataset, and at each 
split, a random subset of features is considered. This randomized approach introduces 
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diversity among the trees, which helps reduce model variance and improve generalization 
performance (Fu et al., 2014). 

One of the most relevant RF advantages is its capacity to estimate feature importance of 
independent variables in the tunning of a predictive/classification model (Collazos-Escobar 
et al., 2024). During the training process of RF, variable importance scores are computed to 
quantify the predictive contribution of each feature. These scores guide the stratified 
sampling of the feature subspace when building the forest, enabling the algorithm to prioritize 
highly informative independent variables while still incorporating those with lower 
relevance, thereby preserving potential complementary information (Wang et al., 2023). 

The assessment of variable importance can be approached through strategies such as 
measuring the reduction in node impurity (e.g., Gini impurity) or evaluating the decrease in 
predictive accuracy (using metrics like mean decrease accuracy or the increase in mean 
squared error) when a feature is permuted (Collazos-Escobar et al., 2023a). These measures 
can inform the calibration of ensemble strategies, enabling the construction of more 
parsimonious and interpretable models based on feature selection results derived from RF. 
This approach (tuning a model using the variable importance criterion for feature selection 
from a trained RF) has been successfully applied across several applications (Chen et al., 
2018; He et al., 2021; Liberda et al., 2021; Wang et al., 2019). Additionally, RF has been 
effectively employed in the food industry (Caladcad et al., 2020; Malaslı et al., 2025), 
demonstrating its potential as a robust ML technique for quality inspection in the food 
industry, including the detection of BF in chicken breast products. 

The NB is another pattern recognition-supervised ML technique used in the data analytics. It 
is a probabilistic (stochastic) model commonly applied to classification tasks. NB operates 
under the simplifying assumption that the features within each class are independent of one 
another and follow a Gaussian (normal) distribution (An and Zhang, 2025). The algorithm 
calculates the conditional probability that a given data instance belongs to each class based 
on its features, then assigns it to the class with the highest probability. Despite its “Naïve” 
assumption of feature independence, NB often performs remarkably well when this 
assumption is reasonably valid. Its simplicity, computational efficiency, and effectiveness 
with high-dimensional data make it a popular choice in many practical applications (Fink et 
al., 2025). 

In the literature there is often reported the use of the LDA, QDA and GLM as supervised 
pattern recognition techniques to address classification problems in real industrial scenarios 
(Nibouche et al., 2024). The idea behind of these techniques is the calibration of a classifier 
based on a training dataset of labeled instances that can accurately predict new feature 
observations into one of the known groups (Cabana and Lillo, 2022). 

LDA is a parametric classification method based on the assumption that the classes are drawn 
from multivariate normal distributions sharing an identical variance (covariance matrix). The 
decision boundary is linear; a straight line in two dimensions or a hyperplane in higher-
dimensional space, and is derived using the Mahalanobis distance such that all points on the 
boundary have equal posterior probability of belonging to either class. LDA is 



 
 

9 
 

computationally efficient and performs well when its underlying assumptions hold, but its 
accuracy deteriorates when the class distributions differ substantially in dispersion or shape 
(Dixon and Brereton, 2009). Similarly, QDA assumes multivariate normality of class 
distributions but relaxes the requirement of equal variance/covariance matrices across 
classes. This allowance produces a quadratic decision boundary capable of accommodating 
classes with distinct shapes and dispersion patterns. While QDA’s flexibility enables it to 
model more complex class structures, it entails estimating a greater number of parameters, 
which increases the risk of overfitting, particularly in scenarios with limited training data 
(Vranckx et al., 2021). 

Finally, GLM extends traditional linear regression (LR) to handle non-normal response 
variables such as binary, count, or skewed data. In the same way as LR, GLMs assume low 
correlation among predictors, but in practice multicollinearity can inflate the variance of the 
maximum likelihood estimator (Algamal, 2018). The GLM model achieves its performance 
via three key components: the random component, which specifies the probability 
distribution of the response variable from the exponential family (such as normal, binomial, 
or Poisson); the systematic component, which represents a linear combination of the predictor 
variables; and the link function, which connects the expected value of the response variable 
to the linear predictor. This structure enables the model to capture non-linear relationships 
between predictors and the mean of the response while maintaining interpretability (Guisset 
et al., 2019). 

One of the main limitations in the calibration of these supervised pattern recognition/ML 
techniques (DTe, RF, SVM, NB, LDA, QDA and GLM) is the multicollinearity between 
input variables in high dimensional and low-sample size real world datasets (Chen et al., 
2025). For instance, NB classifier assumes that the variables used in the calibration process 
are independent (van Herwerden et al., 2022). Further, LDA, QDA and GLM also require 
independent input variables in the calibration process. 

In datasets where the number of samples exceeds the number of variables and the variables 
exhibit low collinearity; it is feasible to compute the inverse of the variance-covariance 
matrix. Nevertheless, such conditions are not common in real industrial settings, where the 
inherently multivariate nature of processes tends to generate high-dimensional variable 
spaces coupled with a limited number of observations, often due to the cost and complexity 
of data acquisition. This poses a challenge for supervised models (DTe, RF, SVM, NB, LDA, 
QDA and GLM) as these methods require the computation of covariance matrix for whole 
and/or each class, and these matrices must be invertible. When the number of variables 
approaches or surpasses the number of observations within a class, the covariance matrix 
becomes singular or nearly singular, rendering the model computationally infeasible 
(Siqueira et al., 2017). In such scenarios, dimensionality reduction techniques such as PCA 
(unsupervised) and PLS become essential. These methods reduce the number of variables, 
enabling the inversion of the variance-covariance matrix while retaining most of the relevant 
information comprising in the new obtained latent variables (Sánchez-Jiménez et al., 2023). 
A notable advantage of PCA, in particular, is its ability to compress large multivariate 
datasets into a small number of orthogonal principal components that preserve the majority 
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of the variance present in the original data (Dixon and Brereton, 2009). Thus, the strategy of 
MIA-ML (use of latent space from PCA on unfolded images for ML model tunning) becomes 
promising in enhancing the predictive capability of a model based on latent structures, in 
exploring improvements, reducing computational time, and achieving better detection 
capability through the efficient calculation and interpretation of the most informative latent 
variables (Collazos-Escobar et al., 2024; Ramtanon et al., 2025). 

The integration of US technology and pattern recognition ML techniques has been previously 
employed in various applications, including the monitoring of yogurt fermentation process 
(Bowler et al., 2023), tracking the drying of potato slices (Sánchez-Jiménez et al., 2023), the 
detection of internal cracks in Manchego cheese (Conde et al., 2008), and has also been used 
for assessing the coconut maturity (Caladcad et al., 2020). 

Regarding the detection of FBs, Zhao et al. (2006) implemented a monitoring system based 
on CUS and Artificial Neural Networks for the detection of glass fragments in filled glass 
containers. The authors report that integrating CUS and artificial intelligence techniques, they 
successfully detected FBs of different sizes (accuracy≥95%) within the canned beverages. 
However, their application is limited to a single point ultrasound measurement per foodstuff 
(Mohd Khairi et al., 2018). This issue is overcome by using USI since an ultrasonic image 
enables the assessment of spatial and internal properties of a food product.  

There is a notable gap in the existing literature regarding of an intelligent system for real-
time quality inspection of chicken based products. Even worst, there are no systems based on 
non-invasive, non-destructive and cost-efficient technologies for the detection of FBs and 
BFs in poultry meat industry. Thus, the proposed research introduces a groundbreaking 
approach for the non-invasive detection of internal BFs in poultry meat through the 
integration of USI, MIA, and ML. While Industry 4.0 has driven the development of 
automated, real-time monitoring systems for the food industry, current industrial solutions 
remain limited in detecting food contaminants embedded within the product matrix. As we 
previously stated, conventional methods such as X-rays and magnetic detectors are effective 
for high-density or ferrous foreign bodies (metal pieces) but fail to identify low-density FBs. 
This work overcomes these limitations by leveraging ultrasound technology capability in the 
analysis of internal structure of foods, the advanced MIA framework for feature extraction, 
and ML for accurate detection performance of uncontaminated and contaminated foodstuffs, 
enabling robust, rapid, and automated detection of BFs within poultry meat. To our 
knowledge, this is the first approach of a fully integrated USI, MIA-MSPC and MIA-ML for 
real-time, non-invasive detection of internal food contaminants in the poultry industry, 
representing a significant advancement in food safety monitoring under the framework of 
Industry 4.0. Additionally, the analysis of the same data-driven task using different strategies 
based on unsupervised and supervised pattern recognition techniques also represents an 
improvement towards the development of computational efficient, parsimonious and high 
likelihood models to be further used in real-time industrial applications. 

Comprehensive efforts should be directed toward elucidating the statistical results of 
implementing a non-invasive food-inspection system for the detection of BFs founded on a 
hybrid methodology that sequentially integrates unsupervised latent-structure modeling with 
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supervised learning techniques, coupled with the multi-objective optimization of statistical 
models and their comparative assessment in terms of feasibility for deployment in real-time 
industrial environments. Consequently, contributions that advance the state of the art in 
chemometrics and intelligent laboratory systems warrant thorough consideration. Therefore, 
if the abovementioned ideas are considered, the purpose of this work was threefold: (i) to 
experimentally determine the feasibility of USI obtained by CUS technology for detecting 
BFs of varying sizes, (ii) to assess the capability integrate MIA-MSPC and USI for the 
calibration of a digital model for detecting BFs within chicken breast and (iii) to analyze the 
improvement in the detection capacity of statistical models by using a hybrid strategy based 
MIA-ML.  
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2. Materials and methods 

2.1 Chicken breast samples 

Skinless and boneless chicken breast samples were purchased from a local grocery store in 
Valencia (Spain) and kept in the fridge at 4 °C until use (Fig. 1A). Since the ultrasound images 
could not be taken in refrigerated conditions, due to the ultrasound equipment was not 
adapted to work inside a refrigeration chamber, the entire chicken breast fillets were left out 
of the refrigerator until they reached room temperature. The breasts were then cut into 5 × 5 
cm samples with a thickness of about 1.5 cm (Fig. 1B). Samples with no BF were considered 
as the control samples.  

Fig. 1. Flowchart of the main steps to prepare control and OC (out-of-control) samples. A, 
B, C and D for control images, furthermore C, B, E, F, G and H for OC images. 

 

2.2 Bone fragments 

A set of bone fragments extracted from different parts of chicken skeleton was considered. 
For this purpose, a whole chicken was purchased, boiled for 20 minutes at 80 ºC, and then 
manually deboned, in order to extract these bone fragments. The set of bone pieces used in 
the experiments (Fig. 1E) consisted of a bone obtained from dorsal vertebrae with dimensions 
of 2.0 × 1.5 cm (Fig. 1Ei), a fragment taken from the chest bone of 2.0 × 1.0 cm (Fig. 1Eii), 
and three different fragments extracted from the chicken rib with sizes of 1.5 × 0.3 cm (Fig. 
1Eiii), 1.0 × 0.3 cm (Fig. 1Eiv) and 0.5 × 0.3 cm (Fig. 1Ev).   
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2.3 Ultrasound experimental set-up 

The ultrasound images were acquired using the experimental set-up described in Fig. 2. The 
equipment consisted in a computer (Fig. 2A), an oscilloscope (Fig. 2B, MDO3024, Tektronix, 
WA, USA), an ultrasonic generator-receiver (Fig. 2C, 5077 PR, Olympus, Houston, TX, 
USA), a pair of commercial ultrasound transducers (Fig. 2D, A314S-SU model, Panametrics, 
Waltham, MA, USA) of 1 MHz central frequency and 1 cm of diameter, operating in through-
transmission mode, the food sample (Fig. 2E) and a digital caliper (Fig. 2F, 192-633 Serie, 
Mitutoyo, Japan). A program was developed in LabVIEW® 2018 (National Instruments, 
Austin, TX, USA) to record the ultrasonic signals.  

Fig. 2. Equipment used for ultrasound image acquisition. It consisted of one computer (A), 
one oscilloscope (B), one generator-receiver (C), two ultrasonic transducers (D), food sample 
(E) and digital caliper (F). 

 

2.4 Experimental procedure 

Control samples (without BF) were placed in polystyrene plates (86.4 ± 0.1 mm diameter, 14 
± 0.1 mm thickness; Fig. 1C) in order to measure the ultrasound signals in the same locations 
for each sample, thus obtaining the USI. To achieve this, a pre-established matrix of 25 points 
(5 × 5 cm) separated every 1 cm (Fig. 1C) was previously drawn on the surface of the 
polystyrene plates. Each point of this matrix corresponded to a pixel of the image (Fig. 1D). 
Tap water was used to wet both the transducers and the polystyrene plate’s surface, to 
improve the transmission of the transducer’s energy through the polystyrene lids. 

After the imaging process, each type of bone fragment was inserted into the previously 
measured control samples, using a laboratory forceps, trying to place it equidistant from each 
face of the chicken breast sample. Each bone type was tested in five different locations (Fig. 
1F), namely, the top-left, top-right, center, bottom-left and bottom-right, corresponding to the 
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position 7, 9, 13, 17 and 19 of the pre-established matrix (Fig. 1G), respectively. Thus, OC 
ultrasound images (Fig. 1H) were obtained. Each type of bone fragment (n = 5, Fig. 1E) was 
analyzed in triplicate (n = 3) at each location within food samples (n = 5, Fig. 1F). Thus, a 
total of 75 chicken samples (5 × 5 × 3) were obtained. However, 81 chicken breast samples 
(Fig. 1B) were analyzed, since six additional samples were considered to ensure consistent 
data; due to some tests had to be repeated because of measurement uncertainty. Thereby, a 
dataset of 81 images of control samples and 81 images of OC were obtained. 

Ultrasound images were obtained using the experimental set-up (Fig. 2) by hand scanning 
the sample surface following the preestablished pattern drawn on the polystyrene plates (Fig. 
1C). For each measured point, two types of ultrasound signals (each of 10k points, average 
of 128 acquisitions) in the time-domain were obtained. The first one was acquired with a 
receiver gain of –20 dB and used to compute the energy-related ultrasound parameters in the 
time (section 2.5.1) and frequency (section 2.5.2) domains. Then, a second type of ultrasound 
signal was acquired with a gain of 0 dB (Fig. 2C) to calculate the ultrasound velocity (section 
2.5.1). Thus, two types of 3D images of 5 × 5 cm (spatial dimensions-2D of scanned product’s 
surface) × 10k points (measured ultrasound signal at each point-1D) were acquired in every 
run. Moreover, the thickness of the samples was gathered for each pixel using the digital 
caliper. 
  
2.5 Feature extraction 

Different parameters related to energy (Fig. 3) and also the ultrasonic velocity were computed 
at pixel level. Previous to the calculations, the ultrasound signals (signal contain in every 
pixel) were baseline-corrected to eliminate any bias associated with electrical noise from the 
network. This correction entailed determining the mean value of each signal within the range 
of 1300–1800 points. If the mean value of the signal was below 0 V, the absolute mean value 
was added to the entire signal (Fig. 3A). Conversely, if the mean value was above 0 V, it was 
subtracted from the signal. Thus, each parameter summarized a channel of the image. e.g., if 
six parameters were estimated from a 3D image, a new image of 5 × 5 (spatial dimensions) 
× 6 (computed parameters) was obtained. The flowchart illustrating the procedure conducted 
to obtain the USI, considering different feature extraction strategies, is summarized in Fig. 4. 
 

2.5.1 Time domain analysis 

Energy-magnitude ultrasound parameters such as peak-to-peak distance (PP, V; Fig. 3B), 
energy (ENG, V2; Fig. 3B) and integral of signals (INT, V µs; Fig. 3B) (Bowler et al., 2023) 
and ultrasound velocity (Ve, m/s) were computed in the time-domain from the ultrasound 3D 
images. The PP (Eq. 1), ENG (Eq. 2) and INT (Eq. 3) were obtained from the 3D images 
with signals acquired at –20 dB, while the Ve was calculated from signals acquired at 0 dB. 
The INT was computed by using the trapezoidal numerical method “trapz” of MATLAB® 
R2023a (The MathWorks Inc., Natick, MA, USA).  
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Fig. 3. Baseline correction of time-domain ultrasound signals (A) and energy-magnitude 
ultrasound parameters (B). 
 
 

 
Fig. 4. Flowchart illustrating the ultrasound-based feature extraction procedure and the 
methodological strategies implemented to identify the presence of bone fragments in out-of-
control (OC) samples using time-frequency domain approaches. 
 
According to Caesarendra and Tjahjowidodo (2017), the variance (VARt, V2), skewness 
(SKEt), kurtosis (KURt) and entropy (ENTt) time-domain energy-distribution parameters 
were also considered. The VARt (Eq. 4), SKEt (Eq. 5), KURt (Eq. 6) and.ENTt (Eq. 7) were 
computed by using “var”, “skewness”, “kurtosis” and “entropy” MATLAB functions for each 
pixel of USI.  
 

PP = max(Xt) − max|min(Xt)|             (1) 
 

ENG = ‖Xt‖2              (2) 
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INT = ∑ Xztiti

N
i=1          (3) 

 

VARt =
∑ (Xti−Xt���)2N
i=1

(N−1)
                    (4) 

 

SKEt =
�∑ (Xti−Xt���)3N

i=1 �/(N−1)

σt3
                        (5) 

 

KURt =
�∑ (Xti−Xt���)4N

i=1 �/(N−1)

σt4
              (6) 

 
ENTt = −∑ p(Xti)log2p(Xti)

N
i=1      (7) 

 
Where Xt is the ultrasound signal in the time-domain, Xzt corresponded with the positive 
values of Xt, X̅t is the mean of each ultrasound signal in the time-domain, N is the number of 
elements of each ultrasound signal, t is the vector which registered the ultrasound signal’s 
traveling time (µs), σt the standard deviation of each ultrasound signal in time-domain and 
p(Xti) is the probability of the occurrence of the i-th amplitude value in the discretized time-
domain ultrasound signal.  
 
To assess the Ve (Eq. 8), the time of flight (TOF, µs) was firstly calculated. TOF (Eq. 9) was 
computed by using Eq. 9 following the energy threshold method (ETM) described by García-
Pérez et al. (2019).  
 

Vel = L
TOF

           (8) 
 

TOF = (TOA−Tr)
ae

               (9) 
 

Where L (m) is the thickness of every pixel of ultrasound images, which was measured using 
a digital caliper (Fig. 2F). TOA is the time-of-arrival (points) which measured the number of 
points corresponding to the time required for an ultrasound wave to propagate between the 
emitter transducer to the receiver transducer. The Tr (number of points) is the trigger signal 
and ae (100 Mpoints/s) is the acquisition speed. 
 

2.5.2 Frequency domain analysis  

The Fast Fourier Transform (FFT) was applied on the time-domain ultrasound signals of each 
pixel of 3D ultrasound images to obtain the ultrasound frequency spectrum (computed via 
“fft”, MATLAB function). The phase-spectrum (phs, Eq. 10) served as the basis for the 
calculation of the energy-related ultrasound parameters in the frequency domain. Zero-order 
moment (M0, MHz, Eq. 11) corresponded with the integral of the area under curve of the phs, 
which quantified its energy (García-Pérez et al., 2019).  
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The first-order moment (M1, MHz) was calculated using Eq. 12. Plus, by dividing M0 by the 
M1, the center frequency of the phs (Fr) was then computed with Eq. 13. Additionally, the 
maximum peak of the frequency spectrum (MP, Eq 14) was also considered. As in section 
2.5.1, the spectral-variance (VARsp, Eq. 15), spectral-skewness (SKEsp, Eq. 16), spectral-
kurtosis (KURsp, Eq. 17) and spectral-entropy (ENTsp, Eq. 18) were also determined 
(Caesarendra and Tjahjowidodo, 2017). 
 

phs = |FFT|                     (10) 
 

M0 =  ∑ phs(f) ΔfN=fFFT
f=1         (11) 

 
M1 = ∑ phs(f) f rΔfN=fFFT

f=1          (12) 
 

Fr = M1
M0

                 (13) 

 
MP = max(phs)                       (14) 

 

VARsp = ∑ (phsi−phs�����)2N
i=1

(N−1)
       (15) 

 

SKEsp = �∑ (phsi−phs�����)3N
i=1 �/(N−1)

σsp3
             (16) 

 

KURsp = �∑ (phsi−phs�����)4N
i=1 �/(N−1)

σsp4
                         (17) 

 
ENTsp = −∑ p(phsi)log2p(phsi)N

i=1       (18) 
 

Where f is the vector of spectral frequencies (MHz), fFFT is the maximal frequency obtained 
by using the FFT, r represents the order of the moment, phs����� is the mean of each phs belonging 
to each pixel of ultrasound images, σsp the standard deviation of each phs belonging to each 
pixel of ultrasound images and p(phsi) is the probability of the occurrence of the i-th value in 
the discretized phs. 
 

2.6 Statistical analysis 

In order to assess the influence of bone fragments size/type and their location within chicken 
breast samples on the time and the frequency domain ultrasound parameters, a multifactor 
analysis of variance (ANOVA) was considered. Multifactor ANOVA models were adjusted 
independently for each computed-parameter. The mean comparisons were performed by 
using Fisher’s Least Significant Difference (LSD) test with a 95% confidence interval. 
Further, an ANOVA test based on the L values was also performed to examine whether the 
inserted bone fragments affected the thickness of measured samples.  
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2.7 Mathematical modeling 

In order to assess the feasibility of using the ultrasound images computed in the time-domain 
and frequency-domain to detect the BFs within chicken breast samples, three different 
approaches, namely time-domain approach (TDA), frequency-domain approach (FDA) and 
the integration of TDA and FDA: time-frequency domain approach (TFDA) were proposed 
(Fig. 4). TDA approach used all the parameters computed in the time-domain (PP, ENG, INT, 
Ve, VARt, SKEt, KURt and ENTt; Fig. 4C), while FDA used the ones in the frequency-domain 
(M0, Fr, MP, VARsp, SKEsp, KURsp and ENTsp; Fig. 4C). Finally, the TFDA integrates all 
features extracted of both time and frequency domain in the same dataset (PP, ENG, INT, Ve, 
VARt, SKEt, KURt and ENTt, M0, Fr, MP, VARsp, SKEsp, KURsp and ENTsp).  
 
To improve the speed of analysis and to facilitate the modelling procedures, each image was 
unfolded as a feature vector (Achata et al., 2018). For this, each image was reshaped as a 
vector of i×j×k (Fig. 4.F-G). As an example, one image in TDA (i = 5 × j = 5 × k = 8) was 
rearranged from a 3D-matrix to a 1D-row vector of dimension 200 (Fig. 4F). Thus, each 
combination of approaches has matrices of unfolded images with different dimensions: TDA 

([162-all data both control and OC] × i×j×k = 200), FDA ([162-all data both control and OC] 
× i×j×k = 175) and TFDA ([162-all data both control and OC] × i×j×k = 375). 
 
As stated in the “Introduction section”, addressing the challenge of detecting BF in the 
poultry meat industry is of critical importance. To this end, various data-driven modeling 
strategies should be explored to identify the most effective solution. In this study, two main 
strategies were proposed. The first involved an unsupervised method, applying a PCA model 
within the framework of MIA-based Multivariate Statistical Process Control (MSPC). The 
second approach aimed to assess whether detection performance could be improved through 
Latent Variable-based Machine Learning (LV-ML) techniques. The statistical modeling 
procedures for both the unsupervised and supervised strategies are illustrated in Fig. 5 and 
described in detail in sections 2.7.1 and 2.7.2. 
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Fig. 5. Statistical modeling procedure used for both unsupervised and supervised strategies 
in the detection of bone fragments in poultry meat. Analysis of different approaches time-
domain, frequency-domain and time-frequency-domain (A), unsupervised modeling using 
principal component analysis (PCA) and statistical optimization via Multivariate Statistical 
Process Control (MSPC) based Residual Sum Squares (RSS) and Hotelling’s T-square (T2) 
statistics (B) and supervised modeling and optimization based on Latent Variable-Machine 
Learning (LV-ML). 
 

2.7.1 Unsupervised modeling 

2.7.1.1 MIA based PCA-MSPC 
 
The MIA procedure was followed according to reported by Colucci et al. (2019) and Verdú 
et al., (2025). The PCA model was employed to extract the latent eigenspace of unfolded 
control images (without BF). For this purpose, control data sets (81 control images) were 
randomly split into a segment of 90% of experimental data for model calibration (Ccal; 73 
samples). The remaining samples, not included in model training, comprised 10 % of the 
control data (CEV; 8 samples) and all OC images (81 samples), which were reserved for 
external validation. This validation aimed to assess the feasibility of the calibrated PCA 
model in detecting BF (Reis, 2015).  
 
Firstly, the segment of data for PCA calibration (Eq. 19) was mean-centered and scaled to 
have unit variance. The PCA model used the Singular Value Decomposition (SVD) algorithm 
to extract the orthogonal latent eigenspace by compressing the image information into a LVs 
(Kruse et al., 2014). During the scaling process, both the mean and standard deviation vectors 
obtained from scaling process were saved as PCA control coordinates. Furthermore, the 
external validation dataset (CEV + OC images) was scaled (CEVsc + OCsc) using the control 
coordinates and then projected onto the latent space by using the loadings (PT

cal; Eq. 19-21) 
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from the control model. The residual sum of squares (RSS; Eq. 22-24) and the Hotelling’s T-
squared (T2; Eq. 25-27) multivariate control statistics were computed. 
 
To assess the detection capability of MIA-MSPC, a design of experiment (DoE) was 
formulated. This DoE consisted in analyze the influence of computing the control limit (CL) 
of both RSScal (Eq. 22) and T2

cal (Eq. 25) from control images, using four different levels 
(90%, 95%, 97.5% and 99%) by percentile method (Vitale et al., 2016). Additionally, a limit 
augmentation (LA) of 0%, 50%, 75% and 100% was used to increase the decision boundary 
of computed CLs (Sinisterra-Solís et al., 2024). 
 

C�cal = tcalPcalT                       (19) 
 

tEV = CEVscPcal           (20) 
 

tOC = OCscPcal           (21) 
 

RSScal = ∑ (Ccal − tcalPcalT )a2A
a=1                                         (22) 

 
RSSEV = ∑ (CEVsc − tEVPcalT )a2A

a=1                                        (23) 
 

RSSOC = ∑ (OCsc − tOCPcalT )a2A
a=1                                        (24) 

 

T2
cal = ∑

tcal
2

a
σcala

2
A
a=1                                                    (25) 

 

T2
EV = ∑ tEV

2
a

σcala
2

A
a=1                                                    (26) 

 

T2
OC = ∑ tOC

2
a

σcala
2

A
a=1                                                    (27) 

 
where Ĉcal is the predicted control images based on the calibrated PCA model, tcal, tEV and tOC 
are the scores of projected Ccal, CEV and OC images in the PCA space and σ2

cal,a is the variance 
of each a computed LV. Statistical modeling and computing procedure was performed using 
MATLAB programming language. 
 

2.7.1.2 Analysis of sample size in the detection of BF using MIA-MSPC 
 
In order to elucidate the influence of the number of USI (both control and OC) used in the 
detection of BF within poultry samples, four different datasets varying in their number of 
images were used in the mathematical modeling. The total of experimental dataset (81 control 
images and 81 OC images, i.e. 162 images) was split into further three different ratios with 
75% (61 control images and 60 OC images, equal to 121 images), 50% (41 control images 
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and 40 OC images, equal to 81 images) and 25% (21 control images and 21 OC images, equal 
to 42 images). Thus, TDA using the total of experimental data set (100%) consisted in 81 
control images and 81 OC images, both with dimensions of i = 5 (number of points on the X 
axis)× j = 5 (number of points on the Y axis) × k = 8 (number of parameters computed in the 
time-domain). FDA was composed of 81 control images and 81 OC images, both with 
dimensions of i = 5 × j = 5 × k = 7 and TFDA integrating both TDA and FDA, as result 81 
control images and 81 OC images, both with dimensions of i = 5 × j = 5 × k = 15. Furthermore, 
the other datasets (75%, 50% and 25%) were also considered for TDA, FDA and TFDA. 
These datasets were also unfolded as a vector of i×j×k. As a result each combination of 
approaches has matrices with different dimensions: TDA ([162 unfolded images; UNI-100%, 
121 UNI-75%, 81 UNI-50% , 42 UNI-25%] × i×j×k = 200), FDA ([162 UNI-100%, 121 UNI-
75%, 81 UNI-50% , 42 UNI-25%] × i×j×k = 175) and TFDA ([162 UNI-100%, 121 UNI-
75%, 81 UNI-50% , 42 UNI-25%] × i×j×k = 375).  
 

2.7.1.3 Analysis of first order statistics on ultrasound energy-magnitude-distribution 
parameters 
 
Alternatively to all strategies described, a new approach was proposed. Feature extraction 
approach using first order statistics applied on ultrasound energy-magnitude-distribution 
parameters. This approach consisted in compute from each channel of the images (Fig. 4D-
4E), the mean, standard deviation, range, skewness and kurtosis. Then, new approaches 
named feature-extraction time-domain approach (feTDA), feature-extraction frequency-
domain approach (feFDA) and feature-extraction time-frequency domain approach 
(feTFDA) were also evaluated. As an example, in TDA, which used the PP, ENG, INT, Ve, 
VARt, SKEt, KURt and ENTt (81 control images and 81 OC images, both with dimensions 
of i = 5 × j = 5 × k = 8), for each channel, five first order statistics such as mean, standard 
deviation, range, skewness and kurtosis were calculated, as result feTDA considering all data 
has dimensions of 162 images × [5 first order statistics × 8 channels =40]. The same 
procedure was applied for FDA (162 × 35) and TFDA (162 × 75). This approach was 
proposed to reduce the dimensionality of the original high-dimensional data space. The 
rationale behind this method lies in the assumption that the presence of BF alters the statistical 
distribution of the ultrasound energy-magnitude-distribution parameters. Specifically, 
changes in first-order statistical descriptors (mean, standard deviation, range, skewness, and 
kurtosis) extracted from each channel are hypothesized to reflect these distributional shifts.  

 

2.7.1.4 Classification performance and statistical validation of unsupervised 
modeling strategy 
 
The capability of PCA in the detection of BFs was assessed varying from 1 LV to the maximal 
number of LVs for each approach (section 2.7.1.1, section 2.7.1.2 and section 2.7.1.3) and 
sample ratio. Both RSS and T2 multivariate statistical control charts where employed to 
quantify the classification performance of the models, joint to the use of two corresponding 
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confusion matrices (CFM, Eq. 28; computed using “confusionmat” MATLAB function). In 
this way, control images from calibration and internal validation dataset with values of RSS 
and T2 below the LA-control limits indicate true negatives (TN), whereas if they exceed the 
LA-control limits, they indicate false positives (FP). Regarding the OC images, true positive 
(TP) means OC images exceeding the LA-control limit, hence being correctly detected as 
samples with FBs, whereas OC images not exceeding the LA-control limit are considered as 
false negative (FN). The goodness of classification of each multivariate statistic was assessed 
by computing figures of merit such as the overall accuracy (Acc, Eq. 29), sensibility (Se, Eq. 
30) and specificity (Sp, Eq. 31) (Craig et al., 2018).  

 

CFM = Predicted 
Real

�
 OC Control

OC TP FP
Control FN TN

�                         (28) 

 
Acc(%) = TP+TN

TP+TN+FP+FN
∗ 100           (29) 

 
Se = TP

TP+FN 
      (30) 

 
Sp = TN

TN+FP
      (31) 

 
In order to optimize the PCA model based on RSS and T2, a multi-objective optimization 
problem was formulated. The objective function was finding the number of LVs (optimal 
number of principal components, OPCs) of the PCA model which simultaneously maximize 
both the Se and Sp. Thus, the response surface methodology (RSM) and desirability function 
(De) was performed (Kumar et al., 2019; Yolmeh and Jafari, 2017). In this context, the same 
desirability value was assigned to both Se and Sp, assuming equal importance for correctly 
identifying positive and negative cases. This balanced approach ensures that the optimization 
process does not favor one metric over the other, leading to a more robust and generalizable 
model (Costa and Lourenço, 2023). 
 
Optimization processes were carried out using the “fmincon” MATLAB function. All 
calculations were repeated 100 times to estimate the influence of considering different 
randomly partitions of the control matrices to calibrate the PCA model and further its 
influence on the detection of BFs. For the selection of the number of LVs of the optimized 
PCA model in each approach maximizing the classification performance, a multifactor 
ANOVA model considering the random data partition (as a blocking factor), the control limits 
and their LA and the goodness of classification metrics as responses (Acc, Se, and Sp) was 
carried out. All multifactor ANOVA models (sections 2.6 and 2.8) were subjected to residual 
validation (Marques et al., 2020). This process involved conducting different tests on the 
residuals to assess normality (Shapiro-Wilk’s test and normal probability plot), independence 
(Ljung-Box’s test), and homoscedasticity (multiple linear regression-MLR on square 
residuals). Hypothesis tests and fulfillment of statistical assumptions were assessed at a 
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confidence level of 95%. The statistical analysis was conducted using STATGRAPHICS 
Centurion XVIII (Manugistics, Inc., Rockville, MD, USA). 
 

2.7.2 Supervised machine learning latent-based classification models 

As already mentioned in Section 2.7, the second approach aimed to explore whether applying 
machine learning (ML) to the MIA-PCA framework could improve the detection of BF in 
poultry meat. To this end, an expanded and more in-depth modeling procedure was employed, 
including analysis, multi-objective optimization, and variable selection strategies. Based on 
the previously extracted latent eigenspace from the PCA model, the images projected onto 
the control model for calibration (tcal), control images for external validation (tEV), and OC 
images (tOC) were combined into a single matrix for each approach (TDA, FDA and TFDA). 
These matrices served as the basis for calibrating various ML techniques using the extracted 
LVs. The LV-ML techniques included: SVM, RT, RF, NB, LDA, QDA, and GLM. These 
techniques were applied in binary classification mode to mathematically distinguish between 
control (tcal+tEV) and OC (tOC) USIs, based on the extracted latent eigenspace (see section 
2.7.1). For this purpose, the scores (both from control and OC images) were used as input 
(regressors) of these ML classifiers.  
 
An additional approach emerge since TFDA is the combination of two different approaches 
with different number channels (Fig. 4D) and these channels belong to two different domains, 
the temporal domain and frequency domain. In the previous section 2.7.1, TDA and FDA 
were integrated into same matrix without any preprocessing tool, wherein the naturally 
related these descriptors and the number of in each group were not considered. In order to 
elucidate whether this combination led to an any improvement in the detection of BF, two 
types of block scaling; “Hard” and “Soft” were applied to TFDA (Eriksson et al., 2016). 
Thus, TFDA block-scale hard (TFDABH, Eq. 32) and TFDA block-scale soft (TFDABS, Eq. 
33) were also considered as additional approaches.  
 

TFDABH = �
XTDA−X�TDA

σTDA
√nVTDA

XFDA−X�FDA
σFDA

√nVFDA
�                                       (32) 

 
 

TFDABS = �
XTDA−X�TDA

σTDA
√nVTDA4

XFDA−X�FDA
σFDA

√nVFDA4
�                                       (33) 

 
Where XTDA and XFDA are the matrices formed by the UNI in TDA and FDA respectively, 
X̂TDA, σTDA, and nVTDA, and X̂FDA, σFDA, and nVFDA are the mean, standard deviation and 
number of variables in XTDA and XFDA, respectively. 
 

As the detection of BF was primarily an experimental data-driven task, exploring various 
configuration of each ML technique became imperative in order to properly address the 
experimental variability of hyperparameters in the detection of BF (Collazos-Escobar et al., 
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2023b). Thus, in order to optimize the hyperparameters of each LV-ML technique, different 
multilevel factorial DoEs were formulated. 
 
In the case of SVM, a DoE (51612131711) using all approaches (TDA, FDA, TFDA, TFDABH 
and TFDABS), 6 kernel functions (KF; rbfdot, polydot, laplacedot, vanilladot, besseldot, and 
anovadot), two types (C-svc and nu-svc), regularization parameter (C; 100, 500.5, and 1000) 
and NLVs (1, 2, 3, 4,…71) was formulated (Table 1). Computational procedure using all ML 
techniques was carried out using the statistical software R (R Core Team, 2025). Further, 
model fitting via SVM was performed using the R-package developed by Karatzoglou et al. 
(2024). 
 
 
Table 1. Summary of the Support Vector Machine (SVM) configuration used for supervised 
modeling of bone fragment detection in poultry meat. The table reports the R function, 
associated R packages, selected hyperparameters, tuning ranges, and the design of 
experiments (DoE) applied in the analysis. 

R-function R-package Approach HyP  Tuning range DoE 

ksvm kernlab 

i) TDA 
ii) FDA 
iii) TFDA 
iv) TFDABH 
v) TFDABS 

KF 

i) rbfdot 
ii) polydot 
iii) laplacedot 
iv) vanilladot 
v) besseldot 
vi) anovadot 

(51612131711): 
12780 models 

Type 
i) C-svc 
ii) nu-svc 

C 

i) 100 
ii) 500.5 
iii) 1000 

NLVs 

i) 1 
ii) 2 
iii) 3 
…… 

lxxi) 71 
TDA (time-domain approach) frequency-domain approach), FDA (frequency-domain approach), TFDA (time-
frequency-domain approach), TFDABH (time-frequency-domain approach-block-scale hard), TFDABS (time-
frequency-domain approach-block-scale soft), HyP (hyperparameter), KF (kernel function), C (regularization 
parameters) and NLVs (number of latent variables).  
 
 
For RF a DoE (5161711) was set up considering all approaches (TDA, FDA, TFDA, TFDABH 
and TFDABS), different number of trees (NTs ;1= DTe, 50, 500, 1000, 5000 and 10000) and 
number of latent variables (NLVs; 1, 2, 3, 4,…71; Table 2) (Liaw and Wiener, 2002), whereas 
NB (Table 3) considered a DoE (5121711) which employed all approaches (TDA, FDA, 
TFDA, TFDABH and TFDABS), application of Laplace Smoothing (LS; 0-No application 
and 1-application) and NLVs (1, 2, 3, 4,…71; Table 3) (Meyer et al., 2024).  
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Table 2. Summary of the Random Forest (RF) configuration used for supervised modeling 
of bone fragment detection in poultry meat. The table reports the R function, associated R 
packages, selected hyperparameters, tuning ranges, and the design of experiments (DoE) 
applied in the analysis. 

R-function R-package Approach HyP  Tuning range DoE 

randomForest randomForest 

i) TDA 
ii) FDA 
iii) TFDA 
iv) TFDABH 
v) TFDABS 

NTs 

i) 1 = DTe 
ii) 50 
iii) 500 
iv) 1000 
v) 5000 
vi) 10000 (5161711): 

2130 models 

NLVs 

i) 1 
ii) 2 
iii) 3 
…… 

lxxi) 71 
TDA (time-domain approach) frequency-domain approach), FDA (frequency-domain approach), TFDA (time-
frequency-domain approach), TFDABH (time-frequency-domain approach-block-scale hard), TFDABS (time-
frequency-domain approach-block-scale soft), HyP (hyperparameter), NTs (number of trees), DTe (Decision 
tree) and NLVs (number of latent variables).  
 
 
Table 3. Summary of the Naïve Bayes (NB) configuration used for supervised modeling of 
bone fragment detection in poultry meat. The table reports the R function, associated R 
packages, selected hyperparameters, tuning ranges, and the design of experiments (DoE) 
applied in the analysis. 

R-function R-package Approach HyP  Tuning range DoE 

naiveBayes e1071 

i) TDA 
ii) FDA 
iii) TFDA 
iv) TFDABH 
v) TFDABS 

LS 
i) 0  
ii) 1 

(5121711): 
710 models 

NLVs 

i) 1 
ii) 2 
iii) 3 
…… 

lxxi) 71 
TDA (time-domain approach) frequency-domain approach), FDA (frequency-domain approach), TFDA (time-
frequency-domain approach), TFDABH (time-frequency-domain approach-block-scale hard), TFDABS (time-
frequency-domain approach-block-scale soft), HyP (hyperparameter), LS (Laplace Smoothing) and NLVs 
(number of latent variables).  
 
Regarding LDA (DoE= 51711), QDA (DoE=51551) and GLM (DoE= 51711), all of these DoEs 
considered all approaches (TDA, FDA, TFDA, TFDABH and TFDABS) and for LDA and 
GLM a NLVs (1, 2, 3, 4,…71; Table 4). In the case of QDA, a reduced NLVs (from 1 to 55) 
was employed because the independent estimation and inversion of the covariance matrix for 
each class (control and OC) became ill-conditioned when using a higher number of latent 
variables. This is due to the fact that, in QDA, each class requires the computation of its own 
covariance matrix, which must be invertible. When the number of variables approaches or 
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exceeds the number of observations in a class, the covariance matrix becomes singular or 
nearly singular, preventing model computation (Siqueira et al., 2017). Thus, in order to avoid 
this issue, a lower number of NLVs (up to 55) was selected. Although up to 60 NLVs could 
theoretically be used given that the class size was 60 (60 control and 60 OC in training 75% 
dataset) a more conservative cutoff was applied to ensure numerical stability and avoid 
potential problems related to near-singular covariance matrices during QDA computation. 
Computing modeling of LDA, QDA and GLM was performed using different R-function-
packages (Table 4). LDA and QDA were fitted using the method developed by Venables & 
Ripley. (2002) while GLM was calculated using the stats package R Core Team (2025). 
 
 
Table 4. Summary of the Linear Discriminant Analysis (LDA), Quadratic Discriminant 
Analysis (QDA) and Generalized Linear Model (GLM) configuration used for supervised 
modeling of bone fragment detection in poultry meat. The table reports the R function, 
associated R packages, selected hyperparameters, tuning ranges, and the design of 
experiments (DoE) applied in the analysis. 

R-function R-package Approach HyP  Tuning range DoE 

LDA: lda 
 

MASS 
 

i) TDA 
ii) FDA 
iii) TFDA 
iv) TFDABH 
v) TFDABS 

NLVs 

i) 1 
ii) 2 
iii) 3 
…… 
lxxi) 71 

(51711): 
355 models 

QDA: qda 
 

MASS 
 

i) TDA 
ii) FDA 
iii) TFDA 
iv) TFDABH 
v) TFDABS 

NLVs 

i) 1 
ii) 2 
iii) 3 
…… 
lv) 55 

(51551): 
275 models 

GLM: glm stats 

i) TDA 
ii) FDA 
iii) TFDA 
iv) TFDABH 
v) TFDABS 

NLVs 

i) 1 
ii) 2 
iii) 3 
…… 
lxxi) 71 

(51711): 
355 models 

TDA (time-domain approach) frequency-domain approach), FDA (frequency-domain approach), TFDA (time-
frequency-domain approach), TFDABH (time-frequency-domain approach-block-scale hard), TFDABS (time-
frequency-domain approach-block-scale soft), HyP (hyperparameter) and NLVs (number of latent variables).  
 

2.7.2.1 Variable selection based RF model 
 
In order to explore strategies for selecting latent variables (LVs) that maximize the predictive 
performance of the LV-machine learning (LV-ML) models in the detection of BF in chicken 
breast samples, the feasibility of using the Mean Decrease Accuracy (MDA) criterion for 
variable selection (VS) within a Random Forest (RF) model was evaluated (Collazos-Escobar 
et al., 2024). Consequently, the Random Forest-Variable Selection-Latent Variable-Machine 
Learning (RF-VS-LV-ML) approach was also considered (Fig. 6). To achieve this, during 
the model tuning process of SVM, RF, NB, LDA, QDA and GLM techniques across all 
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dataset (TDA, FDA, TFDA, TFDABH and TFDABS), a PCA model was first used to extract 
the latent eigenspace (considering in this case the maximal number of LVs = 71; Tables 1 to 
4). Subsequently, a RF model using 10000 NTs was calibrated on the extracted latent space. 
When this RF model was trained on the training dataset (see Section 2.7.2.2), it achieved an 
Acc of 100% in classifying control and OC samples, which is indicative of an overfitting 
phenomenon in ML models (see “Results and discussion” section). While overfitting is a 
known limitation in ML models (de Andrade et al., 2020), it can be strategically leveraged 
during the VS process to identify features that strongly contribute to model performance. 
Nevertheless, the effectiveness of the selected variables must be rigorously tested using an 
external validation dataset to ensure generalizability (Collazos-Escobar et al., 2023a). Thus, 
using this calibrated RF, the MDA criterion was used to rank the most important first 30 LVs 
to better differentiation of images with and without BFs. Subsequently, these ranked LVs 
were used in the computer modeling of RF-VS-LV-SVM, RF-VS-LV-RF, RF-VS-LV-NB, 
RF-VS-LV-LDA, RF-VS-LV-QDA and RF-VS-LV-GLM (Table 5). 
 

Fig. 6. Statistical modeling procedure used to evaluate the feasibility of variable selection 
(VS) based on mean decrease in accuracy from a Random Forest (RF) model for tuning and 
optimizing supervised machine learning (ML) techniques. The analysis includes: time-
frequency-domain approaches (A), RF-based variable selection (RF-VS; B) and supervised 
modeling and optimization based on selected latent variables using machine learning (RF-
VS-LV-ML; C).  
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Table 5. Random Forest-Variable Selection-Latent Variable-Machine Learning (RF-VS-LV-
ML) approach. Design of Experiments (DoE) for RF-VS-LV-Support Vector Machine (RF-
VS-LV-SVM), RF-VS-LV-Random Forest (RF-VS-LV-RF), RF-VS-LV-Naïve Bayes (RF-
VS-LV-NB), RF-VS-LV-Linear Discriminant Analysis (RF-VS-LV-LDA), RF-VS-LV-
Quadratic Discriminant Analysis (RF-VS-LV-QDA) and RF-VS-LV-Generalized Linear 
Model (RF-VS-LV -GLM). 

Technique Approach HyP Tuning range DoE 

RF-VS-LV-SVM 

i) TDA 
ii) FDA 
iii) TFDA 
iv) TFDABH 
v) TFDABS 

KF 

i) rbfdot 
ii) polydot 
iii) laplacedot 
iv) vanilladot 
v) besseldot 
vi) anovadot 

(51612131): 
180 models 

Type 
i) C-svc 
ii) nu-svc 

C 

i) 1 
ii) 500.5 
iii) 1000 

RF-VS-LV-RF 

i) TDA 
ii) FDA 
iii) TFDA 
iv) TFDABH 
v) TFDABS 

NTs 

i) 1 = DTe 
ii) 50 
iii) 500 
iv) 1000 
v) 5000 
vi) 10000 

(5161): 
30 models 

RF-VS-LV-NB 

i) TDA 
ii) FDA 
iii) TFDA 
iv) TFDABH 
v) TFDABS 

LS 
i) 0 

ii) 1 
(5121): 

10 models 

RF-VS-LV-LDA 
 

i) TDA 
ii) FDA 
iii) TFDA 
iv) TFDABH 
v) TFDABS 

— (51): 
5 models 

 
RF-VS-LV-QDA 
 

i) TDA 
ii) FDA 
iii) TFDA 
iv) TFDABH 
v) TFDABS 

 
— 

(51): 
5 models 

RF-VS-LV-GLM 

i) TDA 
ii) FDA 
iii) TFDA 
iv) TFDABH 
v) TFDABS 

— (51): 
5 models 

TDA (time-domain approach) frequency-domain approach), FDA (frequency-domain approach), TFDA (time-
frequency-domain approach), TFDABH (time-frequency-domain approach-block-scale hard), TFDABS (time-
frequency-domain approach-block-scale soft), HyP (hyperparameter), KF (kernel function), C (regularization 
parameters), NTs (number of trees), DTe (Decision tree) and LS (Laplace Smoothing). 



 
 

29 
 

2.7.2.2 Classification performance and statistical validation of supervised modeling 
strategy 
 
The classification performance of all LV-ML (section 2.7.2) and RF-VS-LV-ML (section 
2.7.2.1) was also assessed via the CFM (Eq. 28) and all of the figures of merit derived from 
the CFM (Acc, Se and Se; section 2.7.1.4). Additionally, to gain a deeper understanding of 
model behavior and robustness, complementary classification performance metrics were 
computed, including precision (Pr; Eq. 34), recall (Re; Eq. 35), F-score (Fs; Eq. 36) (Galdón-
Navarro et al., 2018), the area under the Receiver Operating Characteristic curve (AUCROC) 
(Debón and García-Díaz, 2012), and the Matthews correlation coefficient (MCC) (El Zein et 
al., 2025). These metrics provide a more comprehensive assessment of the models’ 
classification capabilities, which is particularly relevant in the context of BF detection within 
chicken breast samples. 

Pr = TP
TP+FP

         (34) 
 

Re = TP
TP+FN

          (35) 
 

Fs = 2 ×  Pr × Re
Pr + Re

                      (36) 

 
AUCROC = trapz(ROC)               (37) 

 
MCC = (TP×TN)−(FP×FN)

�(TP+FP) (TP+FN) (TN+FP)(TN+FN)
          (38) 

 
Where “trapz” is the area-under-curve of ROC curve. AUCROC was computed using the 
performance-“auc” R-function from the performance R-package Lüdecke et al. (2021). In 
addition, the confusionMatrix R-function from the Caret R-package (Kuhn, 2008) was used 
to compute the CFM in this section.  
  
In the case of both LV-ML and RF-VS-LV-ML, a modeling strategy based on using a 
segment of 75% of the experimental dataset for models’ training and the remaining 25% to 
calculate their predictive power was used (Debón and García-Díaz, 2012). In this sense, all 
approaches (TDA, FDA, TFDA, TFDABH and TFDABS), the experimental images (section 
2.72) were randomly split 100 times (repeated hold-out strategy) by (Ruiz de Miras et al., 
2024) in two data sets, for training dataset the 121 images (60 ± 1 of control and 60 ± 1 of 
OC) and 41 images (20 ± 1 of control and 20 ± 1 of OC) for validation purposes. Additionally, 
during the computational procedure all models were trained and validated using identical 
datasets. This ensured that all models underwent training and validation with the same data 
split in each partition, eliminating any bias linked to the use of different training and 
validation data (Collazos-Escobar et al., 2023b). The goodness of fit of LV-ML and RF-VS-
LV-ML was calculated for both training and validation datasets. Additionally, the DoEs 
purposed in Tables 1 to 4 were replicate 100 times using in each iteration the same partition 
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for training and the remaining for validation across all LV-ML and RF-VS-LV-ML, As a 
result, for LV-SVM a total of 1’278.000 runs (12780 models from DoE; Table 1 × 100 times), 
LV-RF a total of 213,000 runs (2130 models from DoE; Table 2 × 100 times), LV-NB a total 
of 71,000 runs (710 models from DoE; Table 3 × 100 times), LV-LDA a total of 35,500 runs 
(355 models from DoE; Table 4 × 100 times), LV-QDA a total of 27,500 runs (275 models 
from DoE; Table 4 × 100 times) and LV-GLM a total of 35,500 runs (355 models from DoE; 
Table 4 × 100 times). Meanwhile, in the RF-VS-LV-ML the number of runs were: 18000 
runs for RF-VS-LV-SVM (180 models from DoE; Table 5 × 100 times), 3000 runs for RF-
VS-LV-RF (30 models from DoE; Table 5 × 100 times), 1000 runs for RF-VS-LV-NB (10 
models from DoE; Table 5 × 100 times) and 500 runs for each of RF-VS-LV-LDA, RF-VS-
LV-QDA and RF-VS-LV-GLM (5 models from DoE; Table 5 × 100 times). Additionally, 
computation times (CT, s) were recorded using the system time R-function, both to measure 
the duration required to train the ML techniques and to evaluate their computational cost. All 
computations were performed on an Intel Core i7 processor running at 2.2 GHz with 16 GB 
of RAM. 
 

2.7.2.3 Multi-objective hyperparameters optimization of LV-ML and RF-VS-LV-
ML models 
 
In order to optimize the hyperparameters of each ML techniques in both LV-ML and RF-VS-
LV-ML, a multi-objective strategy based on PLS modeling was applied. Partial Least Square 
Regression (PLSR) technique was used to simultaneously assess the influence of 
hyperparameters combination based-DoEs (Tables 1 to 5) of each technique on all figures of 
merit in a multivariate way. The application of PLSR on this task depicts an important 
advance in ML model’s optimization compared to the conventional univariate way 
(optimization strategy based-MLR/ANOVA on one goodness of fit metric such as mean-
square error; MSE or coefficient of determination; R2), since PLSR allowed to model the 
latent relationship between both regressors and responses simultaneously and to find a latent 
eigenspace wherein to maximize the covariance of projected input and response variables 
(Duma et al., 2024). Thus, the calibrated/validated PLSR model can be further used within 
an optimization framework (Paris et al., 2024). 
 
The first step in this approach consisted in organizing the statistical results obtained from 
each ML into a datasets structured to be further used in the modeling procedure via PLSR. In 
this sense, in the LV-SVM, the data approaches (TDA, FDA, TFDA, TFDABH and 
TFDABS), type (C-svc and nu-svc), KF (rbfdot, polydot, laplacedot, vanilladot, besseldot, 
and anovadot), C (1, 500.5, and 1000) factors from DoE (Table 1) were transformed into 
dummy variables (0-ausence and 1-presence of each condition) to facilitate the mathematical 
PLSR modeling since these factors are naturally categorical. Additionally, replication of runs 
(100 random partition of the experimental datasets) was also considered as categorical input. 
Regarding the NLVs (1 to 71; Table 1) was considered as continuous numerical variable. All 
of these variables were considered as regressors the model regressors in the X matrix space. 
The Y response variable space was formed by the Acc, Se, Sp, Pr, Re, Fs, AUCROC and MCC 
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for both training (AccT, SeT, SpT, PrT, ReT, FsT, AUCROCT and MCCT) and validation (AccV, SeV, 
SpV, PrV, ReV, FsV, AUCROCV and MCCV). The idea behind organize the response matrix 
composed of classification performance metrics for training and validation datasets was to 
elucidate the effect of regressors on both dataset and in the further optimization process, use 
the model to find the best LV-SVM model (from those 12780 models) to simultaneously 
maximize the classification performance of control and OC images from training and 
validation datasets.  
 
For all LV-RF, LV-NB, LV-LDA, LV-QDA and LV-GLM, the dataset approaches (TDA, 
FDA, TFDA, TFDABH and TFDABS) and replication of runs (100 random partition of the 
experimental datasets) were set as dummy variables and NLVs (1 to 71; Table 1) was 
considered as numerical variable. In the case of LV-RF and LV-NB, the NTs and LS (Table 
2 and Table 3) were also converted into dummy variables. Therefore, the DTe, NTs=50, 
NTs=500, NTs=1000, NTs=5000 and NTs=10000 and LS= 0 and LS=1 were considered in 
RF and NB as model regressors, respectively. In the case of RF-VS-LV-ML, the data 
approaches (TDA, FDA, TFDA, TFDABH and TFDABS), hyperparameters belong to each 
ML technique and the replication runs were set as dummy variables. The main difference 
between LV-ML and RF-VS-LV-ML is that, in the RF-VS-LV-ML approach, the tunned RF-
NTs=10000 (as detailed in section 2.7.2.1) determined the most important LVs to maximize 
the classification performance of control and OC images for the training dataset. For that 
reason, the NLVs is not a factor to be considered in the PLSR modeling and it is not a factor 
to be further optimized. Once the datasets were organized, a PCA model was performed prior 
to the PLSR model calibration to verify that all response variables were correlated and to 
ensure the successful calibration of the PLSR model. Otherwise, if the response variables 
were not correlated, it would be necessary to calibrate a separate PLSR model for each group 
of correlated variables. Subsequently, the datasets were independently modeled using a PLSR 
approach. To achieve this, the X (regressors, Eq. 39) and Y (response variables, Eq. 40) 
matrices were mathematically decomposed by finding the maximum covariance and linear 
relationships between the scores T and U (Eq. 39 to 40) (Brendel et al., 2020). The objective 
function in a PLSR model considered maximizing the covariance between X and Y spaces 
via computation of latent variables based on both data spaces. The decision variables obtained 
were the W and C regression coefficients (weights) and their regressors (scores T and U) 
(Barrera Jiménez et al., 2023). 
 

Xpred = TWT + E               (39) 
 

Ypred = UCT + F             (40) 
 
Where Xpred and Ypred are the predicted X and Y matrices, T and U are the score matrices, W 
and C are the weight matrices, E and F are the residual matrices of X and Y data matrices, 
respectively. The selection of the optimal number of PLSR components (ONPLSR) was 
carried out by using a K-fold-Cross-Validation (K=5) in order to avoid the overtraining of 
the PLSR model and the Variable Importance for the Projection (VIPs) metric were used to 
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quantify the global importance of the TDA, FDA, TFDA, TFDABH and TFDABS, 
hyperparameters of each ML technique, NLVs and random partition (RS) of experimental 
data set (Craig et al., 2018). X-variables with VIP values below 0.5 were excluded from the 
model, subsequently a screened PLSR model was obtained (Kahrıman and Liland, 2021). 
Additionally, both the RSS and T2 were used to detect and remove outlier observations from 
the experimental data set (Sánchez-Jiménez et al., 2023). The goodness of fit of PLSR models 
was assessed using the coefficient of determination for training (R2; Eq. 41) and K-Fold cross 
validation (Q2; Eq. 42) datasets and the root mean square error in both training (RMSETR; 
Eq. 43) and for K-Fold cross validation set (RMSECV; Eq. 44). 
 

R2(%) = 100 −
∑ �Y−Ypred�

2n
i=1

∑ �Y �− Ypred�
2n

i=1
                                          (41) 

 

Q2(%) = 100 −
∑ �YCV−YCVpred�

2n
i=1

∑ �YCV  �������− YCVpred�
2n

i=1
                                     (42) 

 

RMSETR = �∑ �Y−Ypred�
2n

i=1
n

                                              (43) 

 

RMSECV = �∑ �YCV−YCVpred�
2n

i=1
nCV

                                          (44) 

Where YCV and YCVpred are the experimental and predicted data matrices for the K-fold cross 
validation dataset used in the PLSR model calibration and n and nCV are the number of 
observations in both training and K-fold cross validation datasets. All parameter estimation 
in the PLSR modeling was conducted using the Non-Iterative Partial Least Square (NIPALS) 
algorithm implemented in the opls R-function of the OPLS R-package (Thévenot et al., 
2015). Once the PLSR models were independently calibrated and validated in each LV-ML 
and RF-VS-LV-ML approaches (Fig. 7), they were used as digital model in an optimization 
problem.  
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Fig. 7. Statistical modeling procedure based Partial Least Squares Regression (PLSR) used 
in the multi-objective optimization of Latent Variable-Machine Learning (LV-ML) and 
Random Forest-Variable Selection-Latent Variable-Machine Learning (RF-VS-LV-ML) 
models. 

The multi-objective optimization process using the PLSR models was carried out in two 
consecutive steps. The first step consisted of independently determining the best 
hyperparameter configuration for each ML technique (LV-ML and RF-VS-LV-ML). In this 
phase, a total of 12 PLSR models (Fig. 7) were calibrated. These models were then used to 
identify the best dataset approach (TDA, FDA, TFDA, TFDABH, and TFDABS), 
hyperparameter configuration (KF, type, C, NTs, and LS), and NLVs for each technique in 
order to maximize the classification performance for both control and OC images in the 
training and validation datasets. 

The second step involved calibrating a new PLSR model to compare all optimized LV-ML 
and RF-VS-LV-ML models and to determine which one achieved the highest classification 
performance for both control and OC images. In this step, the dataset summarized the 
previously optimized models, encoded as dummy variables in the X-space, with all figures 
of merit as responses (Y-space). Additionally, the CT was included as a new response 
variable. The goal using this PLSR model was therefore to identify the best optimized model 
that maximized classification performance in both the training and validation datasets while 
minimizing CT during the training process. Further, to select the optimized model that 
maximized classification performance while minimizing CT, two different ANOVA models 
were performed on Acc and CT as complementary tools to the PLSR-based multi-objective 
decision optimization. 

In the multi-objective optimization process using the calibrated PLSR models, equal weights 
were assigned to the sixteen response variables considered in the Y-space (AccT, SeT, SpT, PrT, 
ReT, FsT, AUCROCT, MCCT, AccV, SeV, SpV, PrV, ReV, FsV, AUCROCV and MCCV), to guarantee 
that all classification performance metrics contributed equally to the overall optimization 
criterion. The search space of the better conditions (dataset approach, hyperparameter 
configuration of ML techniques and NLVs) in the optimization process was bounded by 
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predefined lower and upper limits of X-matrices, containing the dummy variables associated 
with the dataset approaches (TDA, FDA, TFDA, TFDABH and TFDABS) and ML 
hyperparameters (KF, type, C, NTs and LS) and a continuous variable related with NLVs 
(ranged between 1 to 71 LVs). For each candidate X-vector input in its raw (unscaled form), 
standardization was performed using the mean and standard deviation parameters extracted 
from the PLSR model calibration. Then, the response Y-vector corresponding to this 
standardized X-vector was computed using the coefficients (W/C) matrices obtained from 
the calibrated PLSR models. 

Since the PLSR models allowed to a multivariate prediction of all response variables (AccT, 
SeT, SpT, PrT, ReT, FsT, AUCROCT, MCCT, AccV, SeV, SpV, PrV, ReV, FsV, AUCROCV and MCCV) 
per each X-vector candidate solution, the objective function (FO) used in the optimization 
process required a scalarized objective function to compare alternatives. This was defined as 
the weighted sum of the predicted responses (Eq. 45). 

 

FO(X) = ∑ wj ∗ Ypredm
j=1 (X)                      (45) 

 

Where wj is the relative importance assigned to the j-th Y-response. As we previously 
mentioned, equal weights were used to ensure that each classification performance metric 
contributed identically to the FO. This fact was carried out to avoid the potential bias caused 
by the differences in scale among response variables and encoded the intended trade-off 
structure, such that improvements in any metric would have a proportional impact on FO. 
Nevertheless, the weights assigned to each response variable can be adjusted across different 
multi-objective scenarios to reflect alternative assessment of the contribution of these 
response variables to FO. Thus, a systematic sensitivity analysis constitutes a relevant matter 
for further research.  

When CT is included alongside performance metrics to be maximized, Eq. (45) is generalized 
by introducing a direction coefficient (Sj; Eq. 46). 

 

FOCT (X) = ∑ wj ∗ Sj ∗ Ypred(X)m
j=1        (46) 

Where Sj ∈{–1, 1}, with Sj=1 for responses to be maximized and Sj= –1 for responses to be 
minimized. 

The discrete structure in this multi-objective problem required strict combinatorial 
constraints, within the dataset block (TDA, FDA, TFDA, TFDABH, TFDABS) exactly one 
variable could be active (value equal to one after rounding), and similarly for specific 
hyperparameter blocks such as KF, type, C, NTs, LS. Any violation of these one-hot 
conditions (for instance activating multiple datasets or multiple KFs, C, NTs and/or LS 
simultaneously) was considered infeasible solution. To enforce these restrictions within a 
continuous multi-objective optimization framework, a large penalty term was added 
whenever a one-hot constraint was violated. 
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Additionally, in order to avoid this fact, a custom initialization function (auxiliary function) 
generated feasible seed vectors that inherently satisfied all structural constraints by randomly 
selecting one active position in (TDA, FDA, TFDA, TFDABH, TFDABS), randomly 
selecting one active position in hyperparameters, and assigning a random integer to the NLVs 
between 1 and 71 was programed. For instance, in the case of LV-SVM (used here as an 
illustrative X-vector example), the auxiliar function allowed us to randomly generate a vector 
which contains a selected data approach (TDA = 0, FDA =1, TFDA=0, TFDABH=0 and 
TFDABS=0), KF (rbfdot=1, polydot=0, laplacedot=0, vanilladot=0, besseldot=0 and 
anovadot=0), C parameter (C100=0, C500.5=1 and C1000=0) and NLVs=8. Thus, a condition of 
LV-SVM using the FDA approach, using a rbfdot-KF, C parameter of 500.5 and 8 NVLs was 
predicted.  

Optimization process was performed using the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) optimization method, which efficiently handles bound-constrained 
optimization problems with continuous and discrete variables. A total of 100 independent 
optimization runs were conducted, each initialized from a distinct feasible seed (generated 
using the auxiliar function). Upon completion, the solution with the highest score (defined as 
the weighted sum of predicted responses with no penalties) was selected as the optimal 
configuration, representing the best attainable balance across all classification performance 
metrics under the imposed structural and operational constraints. All multi-objective 
computational assessments were conducted using the optim R-function from the stats R-
package.  
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3. Results and discussion 

3.1 Influence of BF on the ultrasound signals in the time and frequency domains  

The influence of BFs on contact ultrasound signals in the time-domain is illustrated in Figs. 
8 and 9, while the results for the frequency-domain are depicted in Fig. 10. Figs. 8 and 9 show 
the contact ultrasound signals obtained from the center point (point 13, Fig. 1G), along with 
their corresponding OC ultrasound images (using PP image as example) wherein the different 
BFs were inserted into chicken breast pieces. Meanwhile, Fig. 10 depicts the phs of control 
and OC also obtained from the center point of control and OC ultrasound images, 
respectively. 

Fig. 8. Ultrasound signals and example of PP (peak-to-peak) image for detection of bone 
fragments within the center of chicken breast samples. Bone fragments of size 2.0 × 1.5 cm 
(A, D) and size of 2.0 × 1.0 cm (B, E), control sample image (C). 
 
A consistent trend was observed in all cases: the BF presence disturbed the time-domain 
control ultrasound signals and the control frequency-domain spectra. In the case of temporal 
domain, the BFs of 2.0 × 1.5 cm (Fig. 8A) and 2.0 × 1.0 cm (Fig. 8B) promoted an important 
decrease in signal amplitude. Moreover, the presence of these BFs led to a pronounced 
reduction in the maximum peak of the phs (for 2.0 × 1.5 cm, Fig. 10A, and 2.0 × 1.0 cm, Fig. 
10B). Conversely, for the BFs of 1.5 × 0.3 cm (Fig. 9A and Fig. 10C), 1.0 × 0.3 cm (Fig. 9B 
and Fig. 10D), and 0.5 × 0.3 cm (Fig. 9C and Fig. 10E), the influence of the bone fragments 
led to less pronounced drops in the maximum amplitude of temporal ultrasound signals and 
the maximum peak of the phs, compared to the samples containing BFs of larger size. 
Additionally, the control ultrasound images (Fig. 8C) and the pixels around point 13 of OC 
images (control pixels) evidenced PP values between 2.8 to 4 V (color bar from orange to 
yellow), meanwhile in the OC ultrasound images (Fig. 8 and Fig. 9): the higher the size of 
BFs the lower the PP values (ranging from 0.5 V, clear-red to 2 V, dark-red).  
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Ultrasound waves are partially reflected and transmitted when they are passing through 
materials with different acoustical impedance (defined by density and velocity). As regards 
the detection of FBs such as BFs, glass or metal fragments within foods, a strong energy 
reflection and scattering effects between the food material and the FBs interfaces are expected 
(Cho and Irudayaraj, 2003). Therefore, the physical properties, structure and nature of FBs 
determine the energy attenuation of ultrasound wave and its velocity (Fariñas et al., 2021a).  
 

Fig. 9. Ultrasound signals and example of PP (peak-to-peak) image for detection of bone 
fragments within the center of chicken breast samples. Bone fragments of size 1.5 × 0.3 cm 
(A, D), size of 1.0 × 0.3 cm (B, E) and size of 0.5 × 0.3 cm (C, F). 
 
In this sense, the results observed from time-domain signals (Fig. 8 and 9) and the phs (Fig. 
10) can be analyzed by considering the BF within chicken breast as a heterogeneous system, 
wherein the disparities in their acoustical impedance resulted in increased reflection of the 
ultrasound waves on sample’s surface as well as scattering of ultrasound energy when it 
passes through the chicken breast, consequently amplifying the attenuation. Similarly, the 
presence of a gas-filled bone structure within the BFs potentially contributes to the energy 
attenuation (Fariñas, et al., 2021). Furthermore, the size of the BF within chicken breast was 
related to the attenuation of ultrasound waves, the larger sizes of BF reflected and/or absorbed 
(scattering inside the bone) more energy of the wave compared to the smaller sizes (Correia 
et al., 2008). 
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Fig. 10. Example of the frequency spectrum of chicken breast samples with and without bone 
fragments. Bone fragments of size 2.0 × 1.5 cm (A), size of 2.0 × 1.0 cm (B), size 1.5 × 0.3 
cm (C), size of 1.0 × 0.3 cm (D) and size of 0.5 × 0.3 cm (E). 
 
 
In order to quantify the abovementioned attenuation effects of BFs within chicken breast 
samples, a multifactor ANOVA examining the influence of BF size and their location inside 
the samples, on the energy-related ultrasound parameters computed in the time-frequency 
domain and ultrasound velocity (section 2.5), was carried out (Tables 6 to 9). Further, the 
results of the multifactor ANOVA assessed on the L are also shown in Table 6.  
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Table 6. Ultrasound parameters computed in the time-domain (energy-magnitude related and 
velocity) and thickness for each bone size and location within the sample. Multifactor 
ANOVA homogeneous groups.  

Position: center (point 13 of the matrix) 
Type PP (V) ENG (V2) INT (V µs) Ve (m s–1) L (m) 

Control 3.8 ± 0.1aA 424.5 ± 3.9aA 204.9 ± 3.5aA 1547.8 ± 11.6aA 0.01 ± 1 × 10–3aA 
2.0×1.5 cm 0.7 ± 0.1bA 11.5 ± 2.3bA 31.0 ± 2.8bA 1433.8 ± 13.0bA 0.02 ± 1 × 10–3aA 
2.0×1.0 cm 0.8 ± 0.1bA 6.9 ± 2.8bA 30.6 ± 1.9bA 1444.9 ± 13.2bA 0.01 ± 1 × 10–3aA 
1.5×0.3 cm 1.1 ± 0.2cA 60.8 ± 2.4cA 66.7 ± 3.6cA 1551.2 ± 7.2aA 0.01 ± 1 × 10–3aA 
1.0×0.3 cm 1.5 ± 0.1dA 59.7 ± 1.8cA 84.4 ± 3.8dA 1552.6 ± 9.1aA 0.02 ± 2 × 10–3aA 
0.5×0.3 cm 1.8 ± 0.2eA 123.2 ± 2.2dA 110.1 ± 2.3eA 1545.9 ± 11.1aA 0.01 ± 2 × 10–3aA 

Position: top-left (point 7 of the matrix) 
Control 3.8 ± 0.1aA 425.9 ± 2.6aA 202.9 ± 1.9 aA 1555.2 ± 11.3aA 0.01 ± 1 × 10–3aA 

2.0×1.5 cm 0.6 ± 0.1bA 8.0 ± 3.8bA 31.9 ± 2.9bA 1444.2 ± 11.7bA 0.02 ± 1 × 10–3aA 
2.0×1.0 cm 0.7 ± 0.1bA 9.6 ± 0.5bA 31.0 ± 2.1bA 1445.5 ± 17.0bA 0.02 ± 1 × 10–3aA 
1.5×0.3 cm 0.9 ± 0.1cA 59.9 ± 3.2cA 67.6 ± 7.1cA 1548.4 ± 12.0aA 0.02 ± 1 × 10–3aA 
1.0×0.3 cm 1.5 ± 0.2dA 58.9 ± 3.7cA 84.4 ± 2.6dA 1549.0 ± 12.9aA 0.01 ± 1 × 10–3aA 

0.5×0.3 cm 1.8 ± 0.2eA 120.5 ± 3.4dA 112.5 ± 3.0eA 1536.2 ± 11.1aA 0.01 ± 1 × 10–3aA 
Position: bottom-left (point 17 of the matrix) 

Control 3.8 ± 0.2aA 424.2 ± 2.8aA 205.6 ± 2.1aA 1546.1 ± 9.5aA 0.01 ± 1 × 10–3aA 
2.0×1.5 cm 0.6 ± 0.2bA 11.3 ± 1.3bA 31.1 ± 4.0bA 1450.4 ± 10.3bA 0.02 ± 1 × 10–3aA 
2.0×1.0 cm 0.7 ± 0.1bA 10.9 ± 1.5bA 30.3 ± 2.8bA 1459.0 ± 9.5bA 0.01 ± 1 × 10–3aA 

1.5×0.3 cm 1.1 ± 0.1cA 59.4 ± 3.3cA 68.1 ± 3.0cA 1534.2 ± 9.0aA 0.01 ± 1 × 10–3aA 
1.0×0.3 cm 1.6 ± 0.1dA 58.3 ± 4.1cA 82.3 ± 2.5dA 1538.1 ± 13.5aA 0.01 ± 2 × 10–3aA 
0.5×0.3 cm 1.9 ± 0.2eA 117.1 ± 2.2dA 113.4 ± 2.2eA 1549.9 ± 11.7aA 0.01 ± 1 × 10–3aA 

Position: top-right (point 9 of the matrix) 
Control 3.7 ± 0.2aA 427.6 ± 2.9aA 203.3 ± 3.3aA 1551.6 ± 11.2aA 0.01 ± 1 × 10–3aA 

2.0×1.5 cm 0.7 ± 0.1bA 12.5 ± 2.3bA 31.9 ± 4.2bA 1446.5 ± 7.0bA 0.02 ± 1 × 10–3aA 
2.0×1.0 cm 0.7 ± 0.1bA 11.4 ± 1.6bA 28.1 ± 4.7bA 1456.4 ± 7.6bA 0.02 ± 1 × 10–3aA 
1.5×0.3 cm 1.0 ± 0.1cA 57.9 ± 2.5cA 68.0 ± 5.2cA 1543.4 ± 8.6aA 0.02 ± 1 × 10–3aA 
1.0×0.3 cm 1.5 ± 0.1dA 59.6 ± 4.0cA 85.3 ± 3.1dA 1544.8 ± 10.5aA 0.02 ± 1 × 10–3aA 
0.5×0.3 cm 1.8 ± 0.2eA 117.2 ± 1.9dA 114.3 ± 3.1eA 1547.1 ± 8.0aA 0.02 ± 1 × 10–3aA 

Position: bottom-right (point 19 of the matrix)  
Control 3.7 ± 0.2aA 429.2 ± 2.2aA 202.3 ± 2.1aA 1548.2 ± 8.1aA 0.01 ± 1 × 10–3aA 

2.0×1.5 cm 0.6 ± 0.1bA 11.5 ± 2.4bA 29.8 ± 2.4bA 1434.0 ± 10.6bA 0.02 ± 1 × 10–3aA 
2.0×1.0 cm 0.7 ± 0.2bA 11.5 ± 1.3bA 30.2 ± 2.6bA 1437.4 ± 11.0bA 0.01 ± 1 × 10–3aA 
1.5×0.3 cm 1.0 ± 0.1cA 57.1 ± 3.4cA 67.9 ± 4.6cA 1540.1 ± 11.3aA 0.01 ± 1 × 10–3aA 
1.0×0.3 cm 1.5 ± 0.2dA 57.8 ± 2.8cA 86.4 ± 4.6dA 1540.7 ± 12.1aA 0.01 ± 1 × 10–3aA 
0.5×0.3 cm 1.9 ± 0.1eA 123.3 ± 2.3dA 114.6 ± 2.6eA 1549.2 ± 8.0aA 0.02 ± 1 × 10–3aA 

PP (peak-to-peak), ENG (energy), INT (integral), Ve (ultrasound velocity), and L (thickness). Results are 
expressed as mean ± standard error. Different lowercase letters indicate statistically significant differences 
(95%) for each ultrasound parameter as a function of the size of bone fragments. Uppercase letters indicate 
statistically significant differences (95%) for the location of these bone pieces within the chicken breast.  
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Table 7. Ultrasound parameters computed in the time-domain (energy-distribution) for each 
bone size and location within the sample. Multifactor ANOVA homogeneous groups. 

Position: center (point 13 of the matrix) 
Type VARt (V2) SKEt KURt ENTt 

Control 0.34 ± 6 × 10–3aA –0.11 ± 9 × 10–3aA 8.92 ± 0.06aA 3.3 ± 0.1aA 
2.0×1.5 cm 7 × 10–3 ± 1 × 10–3bA 0.10 ± 7 × 10–3bA 8.03 ± 0.07bA 2.1 ± 0.1bA 
2.0×1.0 cm 8 × 10–3 ± 1 × 10–3bA 0.11 ± 8 × 10–3bA 8.12 ± 0.06bA 2.1 ± 0.1bA 
1.5×0.3 cm 0.04 ± 6 × 10–3cA –0.03 ± 8 × 10–3cA 8.21 ± 0.07cA 2.4 ± 0.1cA 
1.0×0.3 cm 0.07 ± 3 × 10–3dA –0.03 ± 8 × 10–3cA 8.30 ± 0.07dA 2.6 ± 0.2dA 
0.5×0.3 cm 0.10 ± 6 × 10–3eA –0.06 ± 6 × 10–3dA 8.52 ± 0.07eA 2.7 ± 0.1eA 

Position: top-left (point 7 of the matrix) 
Control 0.34 ± 8 × 10–3aA –0.12 ± 6 × 10–3aA 8.84 ± 0.06aA 3.3 ± 0.1aA 

2.0×1.5 cm 7 × 10–3 ± 2 × 10–3bA 0.10 ± 8 × 10–3bA 8.06 ± 0.06bA 2.1 ± 0.1bA 
2.0×1.0 cm 9 × 10–3 ± 1 × 10–3bA 0.10 ± 7 × 10–3bA 8.06 ± 0.06bA 2.1 ± 0.1bA 
1.5×0.3 cm 0.04 ± 8 × 10–3cA –0.03 ± 5 × 10–3cA 8.19 ± 0.05cA 2.4 ± 0.1cA 
1.0×0.3 cm 0.08 ± 2 × 10–3dA –0.03 ± 6 × 10–3cA 8.29 ± 0.08dA 2.6 ± 0.1dA 
0.5×0.3 cm 0.10 ± 7 × 10–3eA –0.07 ± 8 × 10–3dA 8.55 ± 0.07eA 2.7 ± 0.1eA 

Position: bottom-left (point 17 of the matrix) 
Control 0.34 ± 7 × 10–3aA –0.11 ± 6 × 10–3aA 8.87 ± 0.05aA 3.2 ±0.1aA 

2.0×1.5 cm 7 × 10–3 ± 1 × 10–3bA 0.10 ± 7 × 10–3bA 8.08 ± 0.06bA 2.1 ± 0.1bA 
2.0×1.0 cm 8 × 10–3 ± 1 × 10–3bA 0.10 ± 6 × 10–3bA 8.05 ± 0.05bA 2.1 ± 0.1bA 
1.5×0.3 cm 0.04 ± 6 × 10–3cA –0.04 ± 7 × 10–3cA 8.24 ± 0.07cA 2.5 ± 0.1cA 
1.0×0.3 cm 0.08 ± 3 × 10–3dA –0.05 ± 6 × 10–3cA 8.33 ± 0.06dA 2.6 ± 0.1dA 
0.5×0.3 cm 0.10 ± 7 × 10–3eA –0.07 ± 6 × 10–3dA 8.56 ± 0.06eA 2.7 ± 0.1eA 

Position: top-right (point 9 of the matrix) 
Control 0.33 ± 5 × 10–3aA –0.11 ± 8 × 10–3aA 8.92 ± 0.08aA 3.2 ± 0.1aA 

2.0×1.5 cm 7 × 10–3 ± 1 × 10–3bA 0.10 ± 7 × 10–3bA 8.06 ± 0.07bA 2.1 ± 0.1bA 
2.0×1.0 cm 8 × 10–3 ± 1 × 10–3bA 0.10 ± 7 × 10–3bA 8.14 ± 0.08bA 2.2 ± 0.1bA 
1.5×0.3 cm 0.04 ± 5 × 10–3cA –0.03 ± 5 × 10–3cA 8.23 ± 0.07cA 2.4 ± 0.1cA 
1.0×0.3 cm 0.08 ± 4 × 10–3dA –0.03 ± 5 × 10–3cA 8.32 ± 0.07dA 2.6 ± 0.1dA 
0.5×0.3 cm 0.10 ± 8 × 10–3eA –0.06 ± 5 × 10–3dA 8.54 ± 0.05eA 2.7 ± 0.1eA 

Position: bottom-right (point 19 of the matrix) 
Control 0.34 ± 8 × 10–3aA –0.11 ± 8 × 10–3aA 8.91 ± 0.05aA 3.2 ± 0.1aA 

2.0×1.5 cm 7 × 10–3 ± 1 × 10–3bA 0.10 ± 8 × 10–3bA 8.07 ± 0.07bA 2.1 ± 0.1bA 
2.0×1.0 cm 8 × 10–3 ± 1 × 10–3bA 0.11 ± 6 × 10–3bA 8.16 ± 0.05bA 2.1 ± 0.1bA 
1.5×0.3 cm 0.04 ± 4 × 10–3cA –0.03 ± 5 × 10–3cA 8.21 ± 0.06cA 2.4 ± 0.1cA 
1.0×0.3 cm 0.07 ± 3 × 10–3dA –0.03 ± 6 × 10–3cA 8.33 ± 0.06dA 2.5 ± 0.1dA 
0.5×0.3 cm 0.10 ± 7 × 10–3eA –0.07 ± 5 × 10–3dA 8.54 ± 0.06eA 2.7 ± 0.1eA 

VARt (variance in time-domain), SKEt (skewness in time-domain), KURt (kurtosis in time-domain) and ENTt 
(entropy in time-domain). Results are expressed as mean ± standard error. Different lowercase letters indicate 
statistically significant differences (95%) for each ultrasound parameter as a function of the size of bone 
fragments. Uppercase letters indicate statistically significant differences (95%) for the location of these bone 
pieces within the chicken breast.   
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Table 8. Ultrasound parameters computed in the frequency-domain (energy-magnitude 
related) for each bone size and location within the sample. Multifactor ANOVA 
homogeneous groups. 

Position: center (point 13 of the matrix) 
Type M0 (MHz) Fr  MP 

Control 2177.8 ± 64.6aA 1.00 ± 0.01aA 296.2 ± 16.9aA 
2.0×1.5 cm 396.1 ± 64.6bA 1.02 ± 0.01bA 42.7 ± 3.7bA 
2.0×1.0 cm 333.7 ± 59.4bA 1.03 ± 0.01bcA 43.1 ± 5.7bA 
1.5×0.3 cm 770.1 ± 62.9cA 1.03 ± 0.02bcA 89.8 ± 6.7cA 
1.0×0.3 cm 787.5 ± 73.5cA 1.02 ± 0.01bcA 98.0 ± 6.6cA 
0.5×0.3 cm 827.7 ± 62.4cA 1.03 ± 0.01cA 103.4 ± 11.3cA 

Position: top-left (point 7 of the matrix) 
Control 2094.8 ± 65.9aA 1.00 ± 0.01aA 297.0 ± 8.3aA 

2.0×1.5 cm 354.3 ± 56.3bA 1.02 ± 0.01bA 41.4 ± 5.5bA 
2.0×1.0 cm 383.0 ± 67.7bA 1.02 ± 0.00bcA 46.7 ± 10.1bA 
1.5×0.3 cm 791.6 ± 63.4cA 1.02 ± 0.01bcA 89.1 ± 7.5cA 
1.0×0.3 cm 831.5 ± 65.3cA 1.03 ± 0.01bcA 89.4 ± 10.6cA 
0.5×0.3 cm 862.9 ± 71.2cA 1.03 ± 0.01cA 94.5 ± 14.5cA 

Position: bottom-left (point 17 of the matrix) 
Control 2164.4 ± 62.7aA 1.01 ± 0.01aA 294.1 ± 14.0aA 

2.0×1.5 cm 393.6 ± 49.2bA 1.02 ± 0.01bA 35.5 ± 8.4bA 
2.0×1.0 cm 395.0 ± 67.6bA 1.02 ± 0.01bcA 46.8 ± 8.1bA 
1.5×0.3 cm 805.2 ± 68.6cA 1.03 ± 0.01bcA 87.2 ± 14.0cA 
1.0×0.3 cm 785.8 ± 57.8cA 1.02 ± 0.02bcA 95.2 ± 14.3cA 
0.5×0.3 cm 851.9 ± 61.2cA 1.03 ± 0.00cA 103.7 ± 11.3cA 

Position: top-right (point 9 of the matrix) 
Control 2116.5 ± 61.9aA 1.00 ± 0.01aA 295.7 ± 8.1aA 

2.0×1.5 cm 376.6 ± 54.8bA 1.02 ± 0.01bA 38.9 ± 8.1bA 
2.0×1.0 cm 379.8 ± 49.2bA 1.03 ± 0.02bcA 47.0 ± 8.4bA 
1.5×0.3 cm 757.9 ± 67.2cA 1.02 ± 0.02bcA 93.6 ± 8.1cA 
1.0×0.3 cm 816.1 ± 55.1cA 1.03 ± 0.01bcA 97.9 ± 8.1cA 
0.5×0.3 cm 835.1 ± 60.7cA 1.03 ± 0.02cA 108.4 ± 8.4cA 

Position: bottom-right (point 19 of the matrix) 
Control 2057.9 ± 71.7aA 1.00 ± 0.01aA 298.3 ± 2.5aA 

2.0×1.5 cm 305.9 ± 58.8bA 1.02 ± 0.00bA 33.5 ± 6.4bA 
2.0×1.0 cm 314.9 ± 58.9bA 1.04 ± 0.01bcA 40.4 ± 4.1bA 
1.5×0.3 cm 733.9 ± 57.6cA 1.02 ± 0.01bcA 90.7 ± 4.8cA 
1.0×0.3 cm 782.2 ± 67.7cA 1.03 ± 0.01bcA 92.8 ± 7.3cA 
0.5×0.3 cm 798.5 ± 67.4cA 1.02 ± 0.01cA 96.5 ± 5.8cA 

M0 (zero-order moment), Fr (center frequency), and MP (maximum peak of the frequency spectrum). Results 
are expressed as mean ± standard error. Different lowercase letters indicate statistically significant differences 
(95%) for each ultrasound parameter as a function of the size of bone fragments. Uppercase letters indicate 
statistically significant differences (95%) for the location of these bone pieces within the chicken breast.   
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Table 9. Ultrasound parameters computed in the frequency-domain (energy-distribution) for 
each bone size and location within the sample. Multifactor ANOVA homogeneous groups.  

Position: center (point 13 of the matrix) 
Type VARsp SKEsp KURsp ENTsp 

Control 6782.2 ± 68.2aA 1.45 ± 0.02aA 3.7 ± 0.1aA 0.5 ± 0.1aA 
2.0×1.5 cm 160.4 ± 42.8bA 1.29 ± 0.07bcA 3.3 ± 0.3bcA 2.8 ± 0.2bA 
2.0×1.0 cm 166.4 ± 56.8bA 1.36 ± 0.05bA 3.2 ± 0.1bA 2.7 ± 0.2bA 
1.5×0.3 cm 954.8 ± 75.3cA 1.35 ± 0.17cA 3.5 ± 0.1cA 2.3 ± 0.1cA 
1.0×0.3 cm 1776.8 ± 88.7dA 1.35 ± 0.06bcA 3.3 ± 0.2bcA 2.3 ± 0.1cA 
0.5×0.3 cm 1884.7 ± 75.5dA 1.31 ± 0.03bcA 3.2 ± 0.1bcA 2.2 ± 0.1cA 

Position: top-left (point 7 of the matrix) 
Control 6769.8 ± 69.2aA 1.45 ± 0.03aA 3.7 ± 0.1aA 0.3 ± 0.1aA 

2.0×1.5 cm 107.1 ± 53.9bA 1.32 ± 0.21bcA 3.4 ± 0.2bcA 2.9 ± 0.1bA 
2.0×1.0 cm 120.6 ± 42.6bA 1.25 ± 0.2bA 3.1 ± 0.3bA 2.9 ± 0.2bA 
1.5×0.3 cm 955.3 ± 76.2cA 1.38 ± 0.09cA 3.5 ± 0.3cA 2.4 ± 0.2cA 
1.0×0.3 cm 1715.3 ± 64.0dA 1.32 ± 0.15bcA 3.3 ± 0.4bcA 2.4 ± 0.1cA 
0.5×0.3 cm 1895.1 ± 77.7dA 1.38 ± 0.03bcA 3.5 ± 0.1bcA 2.5 ± 0.1cA 

Position: bottom-left (point 17 of the matrix) 
Control 6776.9 ± 62.2aA 1.43 ± 0.03aA 3.6 ± 0.1aA 0.4 ± 0.1aA 

2.0×1.5 cm 100.3 ± 45.3bA 1.35 ± 0.11bcA 3.3 ± 0.2bcA 2.9 ± 0.1bA 
2.0×1.0 cm 129.1 ± 47.1bA 1.36 ± 0.10bA 3.2 ± 0.4bA 2.8 ± 0.1bA 
1.5×0.3 cm 898.9 ± 69.2cA 1.42 ± 0.02cA 3.3 ± 0.1cA 2.5 ± 0.1cA 
1.0×0.3 cm 1726.4 ± 58.9dA 1.37 ± 0.12bcA 3.2 ± 0.2bcA 2.4 ± 0.2cA 
0.5×0.3 cm 1886.2 ± 54.6dA 1.38 ± 0.03bcA 3.3 ± 0.1bcA 2.5 ± 0.2cA 

Position: top-right (point 9 of the matrix) 
Control 6746.8 ±77.7aA 1.45 ± 0.03aA 3.7 ± 0.1aA 0.6 ± 0.2aA 

2.0×1.5 cm 122.6 ± 42.6bA 1.30 ± 0.12bcA 3.2 ± 0.2bcA 3.0 ± 0.2bA 
2.0×1.0 cm 138.7 ± 56.8bA 1.25 ± 0.12bA 3.1 ± 0.2bA 2.9 ± 0.1bA 
1.5×0.3 cm 931.0 ± 65.3cA 1.36 ± 0.09cA 3.2 ± 0.1cA 2.4 ± 0.1cA 
1.0×0.3 cm 1712.3 ± 78.7dA 1.32 ± 0.03bcA 3.2 ± 0.2bcA 2.5 ± 0.1cA 
0.5×0.3 cm 1890.3 ± 51.9dA 1.34 ± 0.06bcA 3.0 ± 0.2bcA 2.5 ± 0.2cA 

Position: bottom-right (point 19 of the matrix) 
Control 6795.3 ± 67.6aA 1.45 ± 0.02aA 3.7 ± 0.1aA 0.4 ± 0.2aA 

2.0×1.5 cm 128.0 ± 38.8bA 1.33 ± 0.08bcA 3.2 ± 0.3bcA 2.9 ± 0.1bA 
2.0×1.0 cm 141.6 ± 36.8bA 1.28 ± 0.05bA 3.1 ± 0.2bA 3.0 ± 0.1bA 
1.5×0.3 cm 888.5 ± 40.6cA 1.32 ± 0.05cA 3.2 ± 0.2cA 2.4 ± 0.1cA 
1.0×0.3 cm 1722.1 ± 59.0dA 1.37 ± 0.10bcA 3.3 ± 0.2bcA 2.4 ± 0.2cA 
0.5×0.3 cm 1840.2 ± 47.6dA 1.39 ± 0.02bcA 3.7 ± 0.1bcA 2.5 ± 0.2cA 

VARsp (spectral-variance), SKEsp (spectral-skewness), KURsp (spectral-kurtosis) and ENTsp (spectral-
entropy). Results are expressed as mean ± standard error. Different lowercase letters indicate statistically 
significant differences (95%) for each ultrasound parameter as a function of the size of bone fragments. 
Uppercase letters indicate statistically significant differences (95%) for the location of these bone pieces within 
the chicken breast.  
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A statistically significant (p<0.05) effect of the BF size was found on the time and frequency 
domain ultrasound parameters (Tables 6 to 9). The presence of BFs within chicken breast 
samples disrupted the energy level of control signals (reduction in signal amplitude) in both 
temporal (Table 6 and Fig. 8) and frequency (Table 8 and Fig. 10). BF led to a statistically 
significant (p<0.05) reduction in the energy-related (Table 6) and energy distribution (Table 
7) ultrasound parameters. Conversely, the location of the BF did not significantly (p>0.05) 
affect the ultrasonic parameters, which shows the robustness of the technique to measure the 
presence of bones of different sizes, regardless of their spatial location (Tables 6-9). 
Moreover, non-statistically significant (p>0.05) effect of BF size or location was found on L 
(Table 6), which demonstrates that the incorporation of BFs of varying sizes, in different 
locations, had no impact on the final thickness of the sample, which could have altered the 
ultrasonic measurements.  
 
By using the average values of PP, ENG and INT (Table 6), it was possible to sort the samples 
from the lowest to the highest energy attenuation in five homogeneous groups (LSD intervals 
(p<0.05) from ANOVA), as follows: control (3.8 V, 424.5 V2 and 204.9 V µs) > 0.5 × 0.3 
cm (1.8 V, 123.2 V2 and 110.1 V µs) > 1.0 × 0.3 cm (1.5 V, 59.7 V2 and 84.4 V µs) > 1.5 × 
0.3 cm (1.1 V, 60.8 V2 and 66.7 V µs), 2.0 × 1.0 cm (0.8 V, 6.9 V2 and 30.6 V µs) > 2.0 × 
1.5 cm (0.7 V, 11.5 V2 and 31 V µs). As can be seen in Table 6, the larger sizes of BFs 
exhibited a higher attenuation, compared to the smaller ones. These results were consistent 
with the experimental signals and images depicted in Figs. 8 and 9. In addition, the statistical 
results for Ve indicated that there were no statistically significant differences (p>0.05) in the 
speed of ultrasound waves between the control group and BFs of sizes 1.5 × 0.3 cm, 1.0 × 
0.3 cm, and 0.5 × 0.3 cm. However, a noticeable decrease in the ultrasound velocity was 
found for the larger BF sizes (2.0 × 1.5 cm and 2.0 × 1.0 cm). These results suggest that for 
small bones the wave front (used to calculate velocity) travels only through the meat flesh 
(where velocity is higher) and therefore velocity is not altered, compared to the control 
sample. However, when the bone size is larger, the wave front has traveled through the bone 
(with lower ultrasound velocity than flesh) and therefore ultrasonic velocity decreases.  
 
Similar results were reported by Correia et al. (2008) in the detection of BFs of different sizes 
(large size = 15.75 mm2, medium size = 9.92 mm2 and small size = 6.18 mm2) inserted in 
skinless chicken breasts by using a single point-measure pulse-eco ultrasound technology. 
These authors quantified the influence of these BFs on both the amplitude ratio and Ve . They 
found that the presence of BFs led to a statistically significant (p<0.05) increase in ultrasonic 
attenuation, while non statistically significant differences (p>0.05) were found in Ve. This 
study reported Ve values of 1564 ± 2 m/s for chicken breast samples, similar to the values of 
the present work (Table 6). Although Correia et al. (2008) claimed that the Ve could not be 
used to detect the presence of BFs, our results showed that the largest BFs, which were 
obtained from other parts of the chicken skeleton such as vertebra (2.0 × 1.5 cm, Fig 1E i) 
and chest (2.0 × 1.0 cm, Fig 1E ii), were detected by using Ve.  
 
The greater energy attenuation and delay of the ultrasound wave generated in larger bone 
fragments (Table 6), can be attributed to the presence of air within the bone structure. When 
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ultrasound waves propagate through the bone internal structure, they disperse due to the 
presence of internal air voids, phenomenon that will be more pronounced as the size of the 
bone increases. 
 
The presence of BFs also influenced the energy-distribution parameters (VARt, SKEt, KURt 
and ENTt, Table 7). As for the energy magnitude parameters, five homogeneous groups were 
found by using the LSD intervals. The control, 0.5 × 0.3 cm BF, 1.0 × 0.3 cm BF, 1.5 × 0.3 
cm BF, while the last group was integrated by sizes of 2.0 × 1.5 cm and 2.0 × 1.0 cm. The 
higher BF sizes led to a decrease in the dispersion of the ultrasound waves (VARt), left-
skewed the time-domain signals (positive SKEt values), reduced the tailedness (KURt) and 
the randomness (ENTt). Thus, a noticeable trend was observed from the energy time-domain 
distribution: the larger the BFs, the most pronounced changes in the energy-distribution of 
the ultrasound signals waves. 
 
These results can be explained since the increase in BF size represents a barrier for the 
propagation of the ultrasonic wave causing different effects related to wave amplitude and 
energy distribution (Collazos-Escobar et al., 2025d). As a result, the presence of BF led to an 
important modifications in the statistical first-order parameters of the ultrasonic time-domain 
signals. The reduction in VARt values of samples with BF indicated a lower heterogeneity in 
wave propagation (Table 7), suggesting that larger BFs act as reflector/scatterer of energy 
within the propagation medium. Positive SKEt values in an ultrasound signal, when measured 
in the presence of BF compared to control signals, indicate changes in waveform asymmetry 
consistent with phase shifts or energy reflection patterns resulting from BF-induced 
interference at the propagation medium interfaces between the sample and the BF. 
Furthermore, the reduction in KURt and ENTt (Table 7) values signifies a flattening of the 
amplitude distribution, indicative of fewer extreme deviations in signal intensity and a shift 
toward a more deterministic signal (less entropic behavior) profile. From an applied 
perspective, these features provide a measurable acoustic fingerprint that can be used for the 
non-destructive detection and size characterization of BFs within biological or food matrices. 
 
As regard of the energy-magnitude related variables computed in the frequency-domain (M0, 
Fr and MP, Table 8), the BF presence within chicken breast samples significantly (p<0.05) 
reduced M0 and MP (Fig. 5) and also modified the center-frequency of phs (Fr). Multifactor 
ANOVA of M0 and MP showed three independent groups were clustered by LSD intervals. 
Control, a group integrated by the BF of 1.5 × 0.3 cm, 1.0 × 0.3 cm and 0.5 × 0.3 cm, and 
another group for sizes of 2.0 × 1.5 cm and 2.0 × 1.0 cm. While the results of Fr led to also 
discriminate three groups (Table 8).  
 
These changes can be explained by the fact that the central energy distribution in the phs is 
altered when the propagating ultrasound wave encounters BFs (Fig. 10), which act as acoustic 
impedance mismatches. Such mismatches induce partial reflection, scattering, and 
frequency-dependent attenuation. As a result, the spectral energy shifts toward lower 
frequencies, reducing the overall magnitude parameters (M0 and MP) and modifying Fr. This 
behavior is consistent with the combined effects of diffraction and absorption within 



 
 

45 
 

heterogeneous medium, where the size and composition of BFs control the degree of spectral 
distortion and energy distribution across the frequency domain.  
 
Finally, the BFs presence also influenced the phs energy-distribution (Table 9). The higher 
BFs produced an important decrease in the dispersion of phs (VARsp), right-skewed (positive 
SKEsp values but smaller than control; Fig. 10), reduced the tailedness and increased the 
disorder in the distribution of energy of phs (ENTsp) compared to the control phs. Thus, the 
frequency-domain energy-magnitude and distribution parameters were also adequate to 
detect the presence of BFs in the breasts. 
 

3.2 BF detection using USI and latent-based multivariate statistical process control 

The statistical results considering the experimental ultrasound images for the detection of 
BFs by using the RSS and T2 and both the TDA, FDA and TFDA approaches (section 2.7.1), 
are summarized in Tables 10 to 13. Additionally, the results of the feature-extraction 
approach (section 2.7.1.3) are represented as Supplementary material (Table S1-S3).  
 
The modeling results (Tables 10, 11 and 12) reported that the average values of Acc ranged 
between 88.2 to 96.07%, Se were between 0.88 to 0.96 and Sp varied from 0.88 to 0.96, for 
TDA, FDA and TFDA in all control limits of both RSS and T2 and their LA. Conversely, the 
statistical performance of the RSS and T2 considering the feature extraction approach 
(Supplementary material, Table S1, S2 and S3) exhibited values of Acc varied from 80 to 
93%, while both Se values were between 0.63 to 0.94 and Sp were between 0.86 to 0.94 for 
feTDA, feFDA and feTFDA in all control limits and LA. To complement this, the ANOVA 
results revealed that both Acc, Se and Sp of TDA, FDA and TFDA were significantly (p<0.05) 
higher than those of feTDA, feFDA and feTFDA. This demonstrates the noteworthy 
performance of the former approach over feature extraction for detecting BFs using both 
multivariate control charts (RSS and T2) computed in the MIA-based MSPC strategy. 
 
The statistical results of multifactor ANOVA models computed from TDA, FDA and TFDA 
manifested significant differences (p<0.05) in the average Acc Se and Sp values of the 
optimized PCA models by using different control limits and LA. In all cases, the optimized 
PCA models obtained from the multi-objective optimization process in which the goal was 
to simultaneously maximize both Se and Sp with the lower number of LVs (Fig. 11) were 
considered the best classifiers in each approach and in each multivariate statistic used. 
Moreover, it can be seen in Fig 11 the typical plateau of the classification metrics via RSS 
employing TDA (Acc, Fig. 11A, Se vs Sp, Fig. 11B), FDA (Acc, Fig. 11E, Se vs Sp, Fig. 11F) 
and TFDA (Acc, Fig. 11I, Se vs Sp, Fig. 11J) and for T2 using TDA (Acc, Fig. 11C, Se vs Sp, 
Fig. 11D), FDA (Acc, Fig. 11G, Se vs Sp, Fig. 11H) and TFDA (Acc, Fig. 11K, Se vs Sp, Fig. 
11L) wherein the multi-objective optimization problem found the OPCs in all cases in the 
point of crossing of Se and Sp. 
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Fig. 11. Classification performance of the multivariate control statistics used for detection of 
bone fragments in chicken breast. Average Acc for both RSS and T2 considering TDA (A, C), 
FDA (E, G) and TFDA (I, K) approaches. Average Se and Sp for both RSS and T2 
considering TDA (B, D), FDA (F, H) and TFDA (J, L) approaches. TDA (time-domain 
approach), FDA (frequency-domain approach), TFDA (time-frequency domain approach), 
Acc (overall accuracy), Se (sensibility), Sp (specificity), RSS (Residual Sum Squares) and T2 
(Hotelling’s T-squared).  
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Table 10. Optimized Principal Component models (PCA) and statistical performance of the 
Residual Sum Squares (RSS) and Hotelling’s T-squared (T2) multivariate control statistics 
for detection of bone fragments using time-domain approach (TDA). 

TDA-RSS 
LA (%) CL (%) OPCs Acc (%) Se Sp 

0 

90 6 89.00 ± 0.84aA 0.90 ± 0.02aA 0.88 ± 0.02aA 
95 8 91.61 ± 0.81aB 0.92 ± 0.01aB 0.91 ± 0.02aB 

97.5 12 93.90 ± 0.85aC 0.94 ± 0.02aC 0.94 ± 0.02aC 
99 14 94.25 ± 1.04aC 0.94 ± 0.03aC 0.95 ± 0.02aC 

50 
 

90 17 95.44 ± 0.90bA 0.96 ± 0.01bA 0.95 ± 0.02bA 
95 19 95.49 ± 0.82bA 0.96 ± 0.02bA 0.95 ± 0.02bA 

97.5 21 95.75 ± 0.82bA 0.96 ± 0.01bA 0.96 ± 0.02bA 
99 23 95.67 ± 0.95bA 0.96 ± 0.01bA 0.96 ± 0.02bA 

75 

90 20 95.61 ± 0.84bA 0.95 ± 0.01bA 0.96 ± 0.02bA 
95 23 95.60 ± 0.83bA 0.96 ± 0.01bA 0.95 ± 0.02bA 

97.5 25 95.78 ± 0.81bA 0.96 ± 0.02bA 0.96 ± 0.02bA 
99 27 95.90 ± 0.92bB 0.96 ± 0.02bA 0.96 ± 0.02bA 

100 

90 23 95.72 ± 0.79bA 0.96 ± 0.01bA 0.96 ± 0.02bA 
95 25 95.53 ± 0.80bA 0.96 ± 0.02bA 0.96 ± 0.02bA 

97.5 26 95.19 ± 0.74bA 0.95 ± 0.02bA 0.96 ± 0.02bA 
99 28 95.55 ± 1.05bA 0.95 ± 0.02bA 0.96 ± 0.02bA 

TDA-T2 
LA (%) CL (%) OPCs Acc (%) Se Sp 

0 

90 42 88.20 ± 1.10aA 0.88 ± 0.02aA 0.88 ± 0.02aA 
95 45 91.40 ± 1.04aB 0.92 ± 0.02aB 0.91 ± 0.02aB 

97.5 47 93.38 ± 0.91aC 0.94 ± 0.02aC 0.93 ± 0.02aC 
99 48 94.48 ± 1.01aD 0.95 ± 0.02aD 0.94 ± 0.02aC 

50 

90 54 94.89 ± 0.97bA 0.94 ± 0.02bA 0.95 ± 0.02bA 
95 55 95.38 ± 1.01bB 0.96 ± 0.02bA 0.95 ± 0.02bA 

97.5 55 95.40 ± 0.99bB 0.96 ± 0.02bA 0.95 ± 0.02bA 
99 55 95.38 ± 1.00bB 0.96 ± 0.02bA 0.95 ± 0.02bA 

75 

90 57 95.20 ± 1.02cA 0.96 ± 0.02bA 0.95 ± 0.02bA 
95 57 95.18 ± 1.01cA 0.96 ± 0.02bA 0.95 ± 0.02bA 

97.5 57 95.17 ± 1.00cA 0.96 ± 0.02bA 0.95 ± 0.02bA 
99 57 95.14 ± 0.99cA 0.96 ± 0.02bA 0.95 ± 0.02bA 

100 

90 58 94.94 ± 1.00bcA 0.95 ± 0.02bA 0.95 ± 0.02bA 
95 58 94.93 ± 1.00bcA 0.94 ± 0.02bA 0.95 ± 0.02bA 

97.5 58 94.93 ± 0.99bcA 0.94 ± 0.02bA 0.95 ± 0.02bA 
99 58 94.92 ± 0.98bcA 0.94 ± 0.02bA 0.95 ± 0.02bA 

TDA (time-domain approach), RSS (Residual Sum Squares), T2 (Hotelling’s T-squared), LA (limit 
augmentation), CL (control limit), OPCs (optimal number of principal components), Acc (overall accuracy), Se 
(sensibility) and Sp (specificity). Results are expressed as mean ± standard error. Different lowercase letters 
indicate statistically significant differences (95%) of each goodness of classification metric (Acc, Se and Sp) as 
a function of the LA. Uppercase letters indicate statistically significant differences (95%) of Acc, Se and Sp as 
a function of the computed CL. 
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Table 11. Optimized Principal Component models (PCA) and statistical performance of the 
Residual Sum Squares (RSS) and Hotelling’s T-squared (T2) multivariate control statistics 
for detection of bone fragments using frequency-domain approach (FDA). 

FDA-RSS 
LA (%) CL (%) OPCs Acc (%) Se Sp 

0 

90 6 89.31 ± 1.23aA 0.90 ± 0.04aA 0.88 ± 0.02aA 
95 8 91.75 ± 0.84aB 0.92 ± 0.01aA 0.91 ± 0.02aB 

97.5 10 93.35 ± 1.13aB 0.93 ± 0.03aA 0.94 ± 0.02aC 
99 12 95.40 ± 1.10aC 0.96 ± 0.02aB 0.95 ± 0.02aC 

50 

90 15 95.44 ± 0.96bA 0.95 ± 0.02bA 0.96 ± 0.02bA 
95 17 95.83 ± 0.98bA 0.96 ± 0.02bAB 0.96 ± 0.02bA 

97.5 19 95.85 ± 0.95bA 0.96 ± 0.01bB 0.96 ± 0.02bA 
99 20 95.63 ± 0.99bA 0.96 ± 0.02bB 0.96 ± 0.02bA 

75 

90 18 95.84 ± 0.91bA 0.96 ± 0.01bA 0.96 ± 0.02bA 
95 20 95.80 ± 0.84bA 0.95 ± 0.02bA 0.96 ± 0.02bA 

97.5 21 95.44 ± 0.92bA 0.95 ± 0.02bA 0.96 ± 0.02bA 
99 23 95.77 ± 0.81bA 0.96 ± 0.01bA 0.95 ± 0.02bA 

100 

90 21 95.72 ± 0.84bA 0.96 ± 0.01bA 0.96 ± 0.02bA 
95 23 95.93 ± 0.73bA 0.96 ± 0.01bA 0.96 ± 0.02bA 

97.5 24 95.74 ± 0.90bA 0.96 ± 0.02bA 0.96 ± 0.02bA 
99 25 95.61 ± 0.81bA 0.96 ± 0.02bA 0.96 ± 0.02bA 

FDA-T2 
LA (%) CL (%) OPCs Acc (%) Se Sp 

0 
 

90 41 88.07 ± 1.32aA 0.88 ± 0.03aA 0.88 ± 0.02aA 
95 43 91.35 ± 1.36aB 0.91 ± 0.03aB 0.92 ± 0.02aB 

97.5 45 93.67 ± 1.17aC 0.94 ± 0.02aC 0.94 ± 0.02aC 
99 46 94.94 ± 0.92aD 0.95 ± 0.02aC 0.95 ± 0.02aC 

50 
 

90 55 95.49 ± 0.88bA 0.96 ± 0.02bA 0.95 ± 0.02bA 
95 55 95.44 ± 0.85bA 0.95 ± 0.02bA 0.95 ± 0.02bA 

97.5 55 95.44 ± 0.84bA 0.95 ± 0.02bA 0.95 ± 0.02bA 
99 55 95.41 ± 0.83bA 0.95 ± 0.02bA 0.95 ± 0.02bA 

75 

90 57 95.30 ± 0.90bA 0.95 ± 0.02bA 0.95 ± 0.02bA 
95 57 95.25 ± 0.91bA 0.95 ± 0.02bA 0.95 ± 0.02bA 

97.5 57 95.25 ± 0.91bA 0.95 ± 0.02bA 0.95 ± 0.02bA 
99 57 95.24 ± 0.91bA 0.95 ± 0.02bA 0.95 ± 0.02bA 

100 

90 59 95.29 ± 0.96bA 0.95 ± 0.02bA 0.95 ± 0.02bA 
95 59 95.30 ± 0.96bA 0.95 ± 0.02bA 0.95 ± 0.02bA 

97.5 59 95.30 ± 0.96bA 0.95 ± 0.02bA 0.95 ± 0.02bA 
99 59 95.30 ± 0.96bA 0.95 ± 0.02bA 0.95 ± 0.02bA 

FDA (frequency-domain approach), RSS (Residual Sum Squares), T2 (Hotelling’s T-squared), LA (limit 
augmentation), CL (control limit), OPCs (optimal number of principal components), Acc (overall accuracy), Se 
(sensibility) and Sp (specificity). Results are expressed as mean ± standard error. Different lowercase letters 
indicate statistically significant differences (95%) of each goodness of classification metric (Acc, Se and Sp) as 
a function of the LA. Uppercase letters indicate statistically significant differences (95%) of Acc, Se and Sp as 
a function of the computed CL. 
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Table 12. Optimized Principal Component models (PCA) and statistical performance of the 
Residual Sum Squares (RSS) and Hotelling’s T-squared (T2) multivariate control statistics 
for detection of bone fragments using time-frequency domain approach (TFDA). 

TFDA-RSS 
LA (%) CL (%) OPCs Acc (%) Se Sp 

0 

90 6 88.24 ± 1.20aA 0.88 ± 0.03aA 0.89 ± 0.02aA 
95 8 93.02 ± 0.65aB 0.94 ± 0.01aB 0.92 ± 0.02aB 

97.5 9 94.46 ± 0.86aC 0.95 ± 0.02aC 0.94 ± 0.02aC 
99 11 95.42 ± 0.96aC 0.95 ± 0.02aC 0.95 ± 0.02aC 

50 
 

90 15 96.07 ± 0.86bA 0.96 ± 0.01bA 0.96 ± 0.02bA 
95 16 96.03 ± 0.85bA 0.96 ± 0.01bA 0.96 ± 0.02bA 

97.5 19 95.88 ± 0.81bA 0.96 ± 0.01bA 0.96 ± 0.02bA 
99 20 95.81 ± 0.81bA 0.96 ± 0.01bA 0.96 ± 0.02bA 

75 

90 19 95.81 ± 0.78bA 0.96 ± 0.01bA 0.96 ± 0.02bA 
95 21 95.80 ± 0.87bA 0.96 ± 0.01bA 0.96 ± 0.02bA 

97.5 22 95.77 ± 0.91bA 0.96 ± 0.01bA 0.96 ± 0.02bA 
99 23 95.75 ± 0.84bA 0.96 ± 0.01bA 0.96 ± 0.02bA 

100 

90 22 95.85 ± 0.80bA 0.96 ± 0.01bA 0.96 ± 0.02bA 
95 24 95.70 ± 0.83bA 0.96 ± 0.01bA 0.96 ± 0.02bA 

97.5 26 95.70 ± 0.86bA 0.96 ± 0.01bA 0.96 ± 0.02bA 
99 28 95.89 ± 0.81bA 0.96 ± 0.01bA 0.96 ± 0.02bA 

TFDA-T2 
LA (%) CL (%) OPCs Acc (%) Se* Sp* 

0 

90 47 88.20 ± 1.19aA 0.88 ± 0.03 0.88 ± 0.02 
95 50 91.99 ± 0.87aB 0.92 ± 0.02 0.92 ± 0.02 

97.5 51 93.57 ± 1.03aC 0.93 ± 0.02 0.94 ± 0.02 
99 52 94.23 ± 0.85aC 0.94 ± 0.01 0.94 ± 0.02 

50 

90 59 94.58 ± 1.01bA 0.93 ± 0.03 0.96 ± 0.03 
95 59 94.54 ± 1.03bA 0.93 ± 0.03 0.96 ± 0.03 

97.5 59 94.54 ± 1.03bA 0.93 ± 0.03 0.96 ± 0.03 
99 59 94.54 ± 1.03bA 0.93 ± 0.03 0.96 ± 0.03 

75 

90 60 93.09 ± 1.44cC 0.92 ± 0.05 0.94 ± 0.03 
95 60 93.09 ± 1.43cC 0.92 ± 0.05 0.94 ± 0.03 

97.5 60 93.09 ± 1.43cC 0.92 ± 0.05 0.94 ± 0.03 
99 60 93.09 ± 1.43cC 0.92 ± 0.05 0.94 ± 0.03 

100 

90 61 92.91 ± 2.63cC 0.93 ± 0.08 0.93 ± 0.03 
95 61 92.91 ± 2.63cC 0.93 ± 0.08 0.93 ± 0.03 

97.5 61 92.91 ± 2.63cC 0.93 ± 0.08 0.93 ± 0.03 
99 61 92.91 ± 2.63cC 0.93 ± 0.08 0.93 ± 0.03 

TFDA (time-frequency domain approach), RSS (Residual Sum Squares), T2 (Hotelling’s T-squared), LA (limit 
augmentation), CL (control limit), OPCs (optimal number of principal components), Acc (overall accuracy), Se (sensibility) 
and Sp (specificity). Results are expressed as mean ± standard error. Different lowercase letters indicate statistically 
significant differences (95%) of Acc as a function of the LA. Uppercase letters indicate statistically significant differences 
(95%) of Acc as a function of the computed CL. *The residuals from multifactor analysis of variance (ANOVA) models 
failed to meet the assumptions of normality and homoscedasticity, thus rendering both models unsuitable for practical 
inference. 
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The results of TDA (Table 10) showed a great classification performance of control and OC 
images. Based on the LSD intervals, the optimized PCA model using RSS with 17 OPCs, 
employing 50% augmented the 90% control limit exhibited high classification performance 
(Acc = 95.44, Se = 0.96 and Sp = 0.95) with the minimum number of LVs. In contrast, the 
optimized PCA model using T2 required more LVs (OPCs= 55), maintaining the 
augmentation of 50% of the limit 95% to achieved similar classification performance to RSS 
(Acc = 95.38, Se = 0.96 and Sp = 0.95). 
 
Closely, the statistical results of FDA (Table 11) exhibited quite similar behavior of TDA, 
the optimized PCA using RSS with 17 LVs, augmented 50% control limit at 95% showed an 
Acc = 95.85, Se = 0.96 and Sp = 0.96 and T2 control statistic reached an Acc = 95.44, Se = 0.95 
and Sp = 0.95 using 55 LVs and the same LA and control limit of RSS. As expected, the 
classification results for TDA and FDA were closely aligned by using both RSS and T2 (Table 
10 and 11). This result could be attributed to the fact that the presence of BFs produced an 
important attenuation of the ultrasound energy, which is closely related to both temporal and 
frequency domains (Suen et al., 2016). Therefore, the PCA model based RSS and T2 were 
able to satisfactorily detect the BFs by using both energy-magnitude and energy distribution 
parameters from the time and frequency domains (as explained in section 3.1). The detection 
via RSS suggested that the presence of BFs led to a detectable breakage in the correlation 
structure of the control model and T2 indicated extreme values (lower energy related and 
magnitude values of ultrasound parameters) in these images compared to the control ones 
(Kruse et al., 2014). Nevertheless, the RSS statistic was the most robust classifier to maximize 
the goodness of classification of control and OC images due to its simplicity in the use of 
lower number of LVs than the T2 statistic. 
 
The statistical results of the last approach, which integrated TDA and FDA (TFDA, Table 
12), revealed a slight but statistically non-significant (p>0.05) enhancement in RSS 
classification performance and did not evidence an improvement using T2 (p>0.05). In this 
regard, when model input variables potentially contribute to describe the response, selecting 
specific input variables can improve model results. Conversely, adding more variables could 
worsen the model’s accuracy (Zhang, 2014). Therefore, in the case of T2 the combination of 
TDA and FDA in the same framework to feed the PCA model caused redundance (features 
which have explained the same extreme values) and promote the use of more LVs (Fig. 11K 
and 11L).  
 
Nonetheless, the use of TFDA-RSS contributed to reduce 2 LVs (15 OPCs, Table 12, Fig. 
11I and 11J) maintaining the 50% augmented control limit at 90% and non-significant 
differences (p>0.05) in the figures of merits (Acc=96.07%, Se=0.96 and Sp=0.96) compared 
to TDA and FDA (Acc=95.83%, Se=0.96 and Sp=0.96). This result suggests that the 
combination of both energy-related and energy-magnitude ultrasound parameters computed 
in the time and frequency domains made the PCA model more robust for the detection of any 
disturbance in the correlation structure not only between the variables referred with the 
energy and distribution in time and frequency domains but also the relationship between both 
spaces, thus, less LVs were needed to maximize the classification of control and OC images. 
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In order to analyze in detail the classification performance of the LSD based selected 
optimized PCA models influenced by the approaches considered, the statistical results in 
Table 12 illustrate together the CFMs, the number of images correctly classified and 
misclassified by using both multivariate control statistics.  
 
As can be seen, the RSS and T2 using TDA, FDA and TFDA were able to detect all of OC 
images within the larger BFs (2.0 × 1.5 cm and 2.0 × 1.0 cm), while in the detection of the 
smaller BFs sizes (1.5 × 0.3 cm, 1.0 × 0.3 cm and 0.5 × 0.3 cm), there were almost 1 ± 1 
(from the 100 times randomly partition of data sets) of these OC images incorrectly classified. 
Additionally, these optimized models did not correctly classify at least 3 ± 1 control images 
in all approaches (Table 8). This result can be attributed to the natural variability of poultry 
meat and their respective images (Garrido-Novell et al., 2018). The inherent variability such 
as compositional variations (lean meat and fat components) and intricate structural 
arrangement (tendons and connective tissues of poultry samples) could contribute to increase 
variability in control USIs (Fariñas et al., 2021). As already explained, the use of TFDA-RSS 
did not improve the goodness of classification metrics compared to TDA-RSS and FDA-RSS 
but also reduced the LVs (Table 8). Thus, the use of TFDA-RSS and TDA-T2/FDA-T2 could 
be considered as the best options for practical industrial implementation in the quality 
inspection of the presence of BF within poultry meat products. 
 
Results obtained in the present work were similar to those obtained by Zhao et al. (2006) in 
the detection of glass fragments within beverages packaged in glass containers by the 
integration of CUS and Artificial Neural Networks (ANN). These authors considered a 
training (n = 60 signals) and validation (n = 20 signals) datasets, to develop a detection of 
glass fragment based CUS-ANN. They obtained a successful classification rate (Acc) of 95% 
and claimed that the combination of CUS and ML proved to be feasible for non-invasive and 
real-time quality inspection of foodstuffs. Nonetheless, the differential aspect of this work 
lies in the capability of our ultrasonic system to inspect the entire product, rather than being 
confined to single-point measurements for detecting FBs, further, the use of a high number 
of experimental images for the calibration and external validation of mathematical models. 
This capability provides a significant advantage in analyzing the presence of FBs, regardless 
of their location within food products.  
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Table 13. Classification performance of the Residual Sum Squares (RSS) and Hotelling’s T-
squared (T2) multivariate control statistics in the detection of varying-size bone fragments 
using the time-domain (TDA), frequency-domain (FDA) and time-frequency domain 
(TFDA) approaches. 

TDA Number of samples (predicted) 

Type Number of samples (real) RSS T2 
2.0×1.5 cm 15 15 15 
2.0×1.0 cm 17 17 17 
1.5×0.3 cm 17 16 16 
1.0×0.3 cm 15 14 14 
0.5×0.3 cm 17 15 15 

OC 
(all types) 

81 
TP = 78 ± 1 
FN = 3 ± 1 

TP = 78 ± 1 
FN = 3 ± 1 

Control 
(Ccal+ CEV) 

81 
TN = 77 ± 2 
FP = 4 ± 2 

TN = 77 ± 2 
FP = 4 ± 2 

Ccal 73 TNcal = 71 TNcal = 71 
CEV 8 TNIV = 6 TNIV = 6 

FDA Number of samples (predicted) 

Type Number of samples (real) RSS T2 
2.0×1.5 cm 15 15 15 
2.0×1.0 cm 17 17 17 
1.5×0.3 cm 17 17 16 
1.0×0.3 cm 15 14 14 
0.5×0.3 cm 17 15 15 

OC  
(all types) 

81 
TP = 78 ± 1 
FN = 3 ± 1 

TP = 77 ± 1 
FN = 4 ± 1 

Control 
(Ccal+ CEV) 

81 
TN = 78 ± 2 
FP = 3 ± 2 

TN = 77 ± 2 
FP = 4 ± 2 

Ccal 73 TNcal = 72 TNcal = 71 
CEV 8 TNIV = 6 TNIV = 6 

TFDA Number of samples (predicted) 

Type Number of samples (real) RSS T2 
2.0×1.5 cm 15 15 15 
2.0×1.0 cm 17 17 17 
1.5×0.3 cm 17 16 15 
1.0×0.3 cm 15 14 14 
0.5×0.3 cm 17 16 15 

OC  
(all types) 

81 
TP = 78 ± 1 
FN = 3 ± 1 

TP = 76 ± 2 
FN = 5 ± 2 

Control 
(Ccal+ CEV) 

81 
TN = 78 ± 1 
FP = 3 ± 1 

TN = 78 ± 2 
FP = 3 ± 2 

Ccal 73 TNcal = 72 TNcal = 72 
CEV 8 TNIV = 6 TNIV = 6 

TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency domain approach), 
RSS (Residual Sum Squares), T2 (Hotelling’s T-squared), OC (out-of-control), Ccal (control images for PCA 
calibration), CEV (control images for PCA external validation), TP (true positive), TN (true negative), TNcal 
(true negative for calibration images), TNIV (true negative for external validation images), FP (false positive) 
and FN (false negative). Results are expressed as mean ± standard error.  
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3.2.1 Influence of training and validation dataset size on the BF detection using the 
latent-based statistical process control approach 
 
The statistical results for the detection of BFs by using both RSS and T2 which considered 
the TDA, FDA and TFDA approaches and four different ratios of datasets (100%, 75%, 50% 
and 25%) alongside with statistical comparison using an ANOVA model, are depicted in Fig. 
12.  

Fig. 12. Average Acc performance of RSS and T2 control statistics used for detection of bone 
fragments in chicken breast using different number of ultrasound images. Results for TDA 
(A), FDA (B) and TFDA (C). TDA (time-domain approach), FDA (frequency-domain 
approach), TFDA (time-frequency domain approach), Acc (overall accuracy), RSS (Residual 
Sum Squares) and T2 (Hotelling’s T-squared). 
 
As can be observed (Fig. 12) the higher the number of ultrasound images in the analysis, the 
better performance (progressively and statistically significant increase of Acc, ranging 
between 80% to 96%) of both statistics for all the approaches. The increase in the number of 
ultrasound images led the model become more robust with more images for model calibration 
(Hu et al., 2018). Thus, as can be seen for the RSS, which has provided the best classification 
results in all of approaches, the difference between considering the entire batch of samples or 
75% of the total samples, is statistically (p<0.05) lower (< 4% for TDA and < 3% for FDA 
and TFDA, respectively, Figs. 12A, 12B and 12C). Furthermore, the use of T2 also provided 
great detection results in all approaches. However, the statistical results were better by using 
RSS than T2 with lower number of LVs. This fact (RSS behavior) indicates that the typical 
plateau value that appears when plotting Acc vs the number of samples (Hu et al., 2018) is 
already being reached. This behavior (Fig. 12A, 12B and 12C), in addition to the high value 
in the percentage of correctly classified samples (>95%), indicates that the number of samples 
tested in the present study (162) suffices for the selected approach (TDA, FDA and or TFDA) 
and RSS multivariate control statistic.  
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3.3 BF detection using USI and latent-based machine learning classifiers  

The second part of this work was focused to assessing the performance of the supervised 
Latent Variable-based Machine Learning (LV-ML) strategies, with and without the RF-based 
variable selection stage (RF-VS-LV-ML), for the detection of BF in chicken breast samples. 
These models included the use of Latent Variable-Support Vector Machine (LV-SVM), 
Latent Variable-Random Forest (LV-RF), Latent Variable-Naïve Bayes (LV-NB), Latent 
Variable-Linear Discriminant Analysis (LV-LDA), Latent Variable-Quadratic Discriminant 
Analysis (LV-QDA), Latent Variable-Generalized Linear Model (LV-GLM), Random 
Forest-Variable Selection-Latent Variable-Support Vector Machine (RF-VS-LV-SVM), 
Random Forest-Variable Selection-Latent Variable-Random Forest (RF-VS-LV-RF), 
Random Forest-Variable Selection-Latent Variable-Naïve Bayes (RF-VS-LV-NB), Random 
Forest-Variable Selection-Latent Variable-Linear Discriminant Analysis (RF-VS-LV-LDA), 
Random Forest-Variable Selection-Latent Variable-Quadratic Discriminant Analysis (RF-
VS-LV-QDA) and Random Forest-Variable Selection-Latent Variable-Generalized Linear 
Model (RF-VS-LV-GLM). 
 
In contrast to the unsupervised MIA approach, these methods aimed to leverage the extracted 
latent eigenspace in combination with different classification ML techniques to enhance 
classification performance of chicken breast samples with and without BF. Particular 
emphasis was placed on assessing how the choice of hyperparameter configurations and the 
inclusion of variable selection affected model robustness and predictive accuracy. To provide 
a comprehensive view of model behavior, the performance metrics were systematically 
analyzed and reported separately for the training (75%) and validation (25%) datasets, 
allowing for a direct comparison of fitting ability and generalization power. Accordingly, the 
following section presents the statistical results obtained with the LV-ML and RF-VS-LV-
ML models, highlighting the main differences in accuracy, computational time, and 
complementary figures of merit.  
 
The statistical results of the LV-ML and RF-VS-LV-ML models in the detection of BF within 
chicken breast samples (section 2.7.2, considering the 100% of experimental dataset, 81 
control and 81 OC images, since it was the best data size defined in section 3.2.1) exhibited 
significant differences in the goodness of fit metrics depending on the hyperparameters 
configurations belonging to each ML model and the NVLs used in modeling procedure (Fig. 
13-36). Figs. 13 to 36 illustrate together the average values of Acc (%) and CT (s) of LV-ML 
and RF-VS-LV-ML for both training and validation datasets, while the remaining figures of 
merit (SeT, SeV, SpT, SpV, PrT, PrV, ReT, ReV, FsT, FsV, AUCROCT, AUCROCV, MCCT and MCCV) 
alongside with their variability are compiled in “Supplementary material” (section 9). 
Additionally, the variability associated with the AccT (75% for training) and AccV (25% for 
validation) are also presented as supplementary material.  
 
The statistical results were depicted in average values since the huge number of runs, 
combination between techniques, data approaches, hyperparameters, NLVs and goodness of 
fit metric tested from DoE (section 2.7.2; Tables 1-5) did not facilitate the data representation. 
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Thus, in order to improve the data visualization, the Acc and CT were selected as main figures 
of merit metrics of all evaluated LV-ML and RF-VS-LV-ML models. 
 
As previously stated in “Material and Methods” section, the task of exploring different data-
driven modeling strategies to address the challenge of detecting BF in the poultry meat 
industry is of critical importance. Thereby, the use of LV-ML and RF-VS-LV-ML aimed to 
assess whether detection performance based on the MIA-PCA strategy could be improved 
through ML techniques. For this reason and to facilitate the analysis of how ML influenced 
the classification performance of contaminated/uncontaminated chicken breast samples, all 
figures summarizing the Acc results included a line/grid reference to compare the statistical 
results of MIA-MSPC (Tables 10-12 and Fig. 11) with those obtained from LV-ML and RF-
VS-LV-ML approaches. The first red line/grid colored was include to represent the maximum 
Acc results using the MIA-MSPC-RSS-TFDA (Table 12). Furthermore, an additional green 
line/grid colored was included in all figures as a reference of Acc = 99% with the aim to 
rapidly identify if any of LV-ML and RF-VS-LV-ML models exceeded the Acc = 96.07% 
(Table 12) and reached values of 96.07% ≤ Acc ≤ 99% and/or Acc ≥ 99%. 
 
As a general trend, the statistical results of Acc in all LV-SVM, LV-RF, LV-NB, LV-LDA, 
LV-QDA, LV-GLM, RF-VS-LV-SVM, RF-VS-LV-RF, RF-VS-LV-NB, RF-VS-LV-LDA, 
RF-VS-LV-QDA and RF-VS-LV-GLM models employing different hyperparameter 
configurations and NLVs and using the different data approaches such as TDA, FDA, TFDA, 
TFDABH and TFDABS showed a significant drop between training and validation datasets. 
 
In the case of LV-SVM, the statistical classification performance as a function of the five 
data approaches tested (Figs. 13 to 17) revealed both consistent patterns and important 
differences related to KFs SVM’s hyperparameter, and the NLVs. A pronounced differences 
in Acc between training and validation was observed, particularly with non-linear KFs such 
as rbfdot, laplacedot, polydot, vanilladot, and besseldot, regardless of whether the 
representation was time domain (TDA; Fig. 1S), frequency domain (FDA; Fig. 2S), time-
frequency domain (TFDA; Fig. 3S), and/or block-scaled time-frequency domain (TFDABH; 
Fig. 4S and TFDABS; Fig. 5S). This indicates that non-linear mappings capture complex 
structures in training data but often fail to generalize, especially at high NLVs. Overfitting 
also depended on the SVM configuration. For instance, using the same KF, C-svc and nu-svc 
frequently displayed different Acc trends, showing that the each model configuration classify 
both control and OC images with difference Acc as a function of the NVLs used. 
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Fig. 13. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-domain approach (TDA), shown as a function of the SVM 
hyperparameters and the number of latent variables (NLVs) tested. Results of overall 
accuracy (Acc) obtained with the “anovadot” kernel function are reported separately for the 
training (75%) and the validation (25%) datasets. 
 
Increasing NLVs generally improved model performance, with Acc frequently exceeding 96% 
in both training and validation under TDA, FDA, TFDA, and TFDABH. However, in 
TFDABS, performance decrease severely using KF-besseldot, training Acc remained below 
60% and validation Acc did not increase, even with large NLVs. This result reflects that this 
SVM combination of hyperparameters was not compatible, as a result a low goodness of fit 
was evidenced. Respect to the influence of SVM’s C parameter, it was not significantly. 
Varying in C values between 100 and 1000 did not alter Acc trends, indicating that LV 
preprocessing stabilized the optimization problem, thereby reducing the influence of margin 
regularization. Among KF, anovadot showed the most robust behavior (Fig. 13A and 13B to 
15A and 15B). In TDA, FDA, and TFDA, it yielded high training and validation Acc for both 
C-svc and nu-svc, with narrow train/validation gaps. This suggests that anovadot effectively 
exploits orthogonal latent projections by modeling additive and interaction effects while 
avoiding the severe overfitting observed with other non-linear kernels. Both C-svc and nu-
svc exhibited similar performance, with nu-svc showing slightly smoother validation trends 
at larger NLVs. 
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Fig. 14. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the frequency-domain approach (FDA), shown as a function of the SVM 
hyperparameters and the number of latent variables (NLVs) tested. Results of overall 
accuracy (Acc) obtained with the “anovadot” kernel function are reported separately for the 
training (75%) and the validation (25%) datasets. 
 
 

Fig. 15. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-frequency-domain approach (TFDA), shown as a function of the 
SVM hyperparameters and the number of latent variables (NLVs) tested. Results of overall 
accuracy (Acc) obtained with the “anovadot” kernel function are reported separately for the 
training (75%) and the validation (25%) datasets. 
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Fig. 16. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-frequency-domain approach-block-scale hard (TFDABH), shown 
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested. 
Results of overall accuracy (Acc) obtained with the “anovadot” kernel function are reported 
separately for the training (75%) and the validation (25%) datasets. 
 
 

Fig. 17. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-frequency-domain approach-block-scale soft (TFDABS), shown 
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested. 
Results of overall accuracy (Acc) obtained with the “anovadot” kernel function are reported 
separately for the training (75%) and the validation (25%) datasets. 
 
 
The analysis of CT in Figs. 18 to 22 characterizes the behavior of the LV-SVM framework 
under different hyperparameter and NVLs assessed. CT was measured during training sing 
75% of the dataset, with variations determined by KF, Type (C-svc vs. nu-svc), the C 
parameter and the NLVs considered during model tuning. The figures quantify both the 
computational cost imposed by SVM hyperparameters and the additional cost introduced by 
increasing model dimensionality through larger NLVs. 
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Fig. 18. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM) 
using the time-domain approach (TDA), shown as a function of the SVM hyperparameters 
and the number of latent variables (NLVs) tested. Results of CT are presented for the training 
(75%) dataset. 
 

Fig. 19. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM) 
using the frequency-domain approach (FDA), shown as a function of the SVM 
hyperparameters and the number of latent variables (NLVs) tested. Results of CT are 
presented for the training (75%) dataset.  
 
Regarding to the TDA (Fig. 18), a clear trend was observed. Linear and polynomial functions 
(vanilladot, polydot) consistently show the lowest CT, while more complex kernels (anovadot 
and besseldot) are markedly more expensive, with rbfdot and laplacedot occupying an 
intermediate position. Increasing C from 100 to 1000 only modestly increases CT, indicating 
that solver convergence was only mildly sensitive to tighter margin constraints in this domain. 
Differences between C-svc and nu-svc remain small overall, with nu-svc tending to be 
slightly slower under non-linear kernels at high C values.  
 
Considering the FDA (Fig. 19), the relative kernel ordering persists, but absolute CTs for the 
simpler kernels are generally lower than in TDA. This suggests that frequency representations 
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compact relevant information, thereby reducing the effective per-component computational 
load. In FDA, CT grows more gently with NLVs, especially for vanilladot and polydot, 
whereas non-linear kernels still show steep scaling with dimensionality. The role of C and 
SVM type remains secondary, except under the heaviest kernels. In practical terms, FDA 
achieves a favorable computational profile for low-to-moderate NLVs but does not alleviate 
the cost of highly non-linear kernels. 
 
The results of CT using the TFDA (Fig. 20) raises the computational demand more 
substantially. By concatenating time and frequency features, the dimensionality increases, 
shifting CT upward across all kernels. The relative differences between kernels become more 
pronounced: while vanilladot and polydot remain relatively efficient, rbfdot, laplacedot, and 
especially anovadot and besseldot exhibit steep increases in CT as NLVs grow. Although the 
effect of C remains moderate, high values exacerbate training times when combined with 
non-linear kernels. Once again, the CT-NLVs relationship is nearly linear, but with a steeper 
slope than in TDA and FDA due to the higher effective dimensionality of TFDA 
representations. Additionally, by using TFDABH (Fig. 21) the CT represents the most 
computationally demanding scenario. The hard block-scale of TFDA introduced 
heterogeneous features that dramatically inflate kernel evaluations. As a result, CT is 
substantially higher than in all previous representations, particularly for anovadot and 
besseldot. The effect of C parameter becomes non-negligible in this setting, amplifying 
runtimes significantly when large margins are enforced. Similarly, nu-svc tends to incur 
additional overhead under these demanding conditions. Most critically, the slope of CT 
versus NLVs is steepest in TFDABH: each additional latent variable imposes a 
disproportionately large computational resources, reflecting the compounded cost of block-
scale interactions in high dimensions. 
 
By contrast, the TFDABS (Fig. 22) provides a more balanced profile. Although CT remains 
higher than in TFDA, it is consistently lower than in TFDABH. The KF ranking remains the 
same, but the escalation of CT with NLVs is considerably more moderate than in the hard 
variant. Similarly, the influence of C and SVM type on runtime is less dramatic, returning to 
a pattern closer to TFDA. This indicates that soft scaling mitigates some of the inefficiencies 
introduced by hard block partitioning, allowing richer feature representations without 
incurring prohibitive computational costs. Thereby, the statistical CT results revealed that the 
changes in training time were primarily influenced by kernel choice and the number of latent 
variables, while C plays an amplifying but secondary role, and SVM type contributes only 
marginal differences except in extreme conditions. Across representations, a clear runtime 
ordering can be established: FDA is typically the most efficient, followed by TDA, then 
TFDA, with TFDABS moderately heavier and TFDABH the most computationally 
expensive. 
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Fig. 20. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM) 
using the time-frequency-domain approach (TFDA), shown as a function of the SVM 
hyperparameters and the number of latent variables (NLVs) tested. Results of CT are 
presented for the training (75%) dataset.  
 
 

Fig. 21. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM) 
using the time-frequency-domain approach-block-scale hard (TFDABH), shown as a 
function of the SVM hyperparameters and the number of latent variables (NLVs) tested. 
Results of CT are presented for the training (75%) dataset.  
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Fig. 22. Computational time (CT) of the Latent Variable-Support Vector Machine (LV-SVM) 
using the time-frequency-domain approach-block-scale soft (TFDABS), shown as a function 
of the SVM hyperparameters and the number of latent variables (NLVs) tested. Results of 
CT are presented for the training (75%) dataset.  
 
Regarding the statistical results of the other LV-ML models. Considering the TDA (Fig. 23), 
the performance of LV-RF, LV-NB, LV-LDA, LV-QDA, and LV-GLM exhibits pronounced 
sensitivity to both the NLVs and hyperparameter tuning. In this setting, training accuracies 
consistently exceed those obtained on the validation set, indicating that model fitting is 
strongly influenced by the dimensionality of the latent representation. This divergence, which 
becomes more pronounced at higher NLVs, reveals clear overfitting tendencies, particularly 
in models such as LV-RF and LV-QDA, where decision boundaries adapt excessively to 
training-specific characteristics. Simpler models, such as LV-NB and LV-GLM, yield more 
stable but comparatively lower accuracies, reflecting their reduced flexibility in capturing the 
intrinsic variability of TDA features. 
 
Considering the FDA (Fig. 24), the dependence on NLVs and hyperparameters remains 
evident, but notable distinctions emerge. Models such as LV-RF and LV-LDA achieve 
improved generalization compared with their time-domain counterparts, suggesting that 
spectral features encode discriminative structure more effectively. Validation accuracies 
under FDA are, in several configurations, closer to training values, especially at intermediate 
NLVs, thereby narrowing the gap observed in TDA. This improvement suggests that 
frequency-domain features act as a form of natural regularization, filtering redundant or noisy 
components inherent in raw temporal signals. Nonetheless, the persistence of measurable 
discrepancies between training and validation accuracies across all models indicates that 
overfitting risks are not fully mitigated by the transition from temporal to spectral 
representations. 
 
Using the TFDA (Fig. 25) data approach, most models achieve higher accuracies than under 
TDA or FDA, confirming the advantage of leveraging complementary information domains. 
For instance, LV-RF consistently attains superior training performance, whereas LV-LDA 
and LV-GLM exhibit notable gains in validation accuracy, underscoring the utility of hybrid 
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features for both flexible and linear models. However, the training/validation gap remains a 
dominant trend. Models with high representational capacity, such as LV-RF and LV-QDA, 
are particularly prone to overfitting, while simpler models display less variance but lower 
peak accuracies. This trade-off highlights the challenge of balancing feature richness with 
model robustness. 
 

Fig. 23. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naïve Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis 
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent 
Variable-Generalized Linear Model (LV-GLM) using the time-domain approach (TDA), 
shown as a function of the ML hyperparameters and the number of latent variables (NLVs) 
tested. Results of overall accuracy (Acc) are reported separately for the training (75%) and 
the validation (25%) datasets. 
 
The imposition of block-scale constraints in the TFDA domain adds another dimension to the 
analysis. Under the TFDABH (Fig. 26), training accuracies for several models, especially 
LV-RF and LV-QDA, increase sharply, reflecting the adaptability of these classifiers to 
highly localized time-frequency structures. However, validation performance does not 
consistently follow this trend, and in many cases the training–validation gap widens 
substantially. This outcome underscores the risk that overly rigid block constraints, while 
effective in capturing local dependencies, may exacerbate overfitting in the absence of 
suitable regularization. Conversely, the TFDABS (Fig. 27) yields a more favorable balance 
between training and validation performance. Here, the gains in training accuracy are more 
moderate than under TFDABH, but validation accuracies are generally higher and more 
stable across NLVs. This suggests that the TFDABS design provides a more flexible 
mechanism for integrating local time-frequency dependencies without enforcing rigid 
structural constraints. As a result, models trained under TFDABS exhibit stronger 
generalization capability, positioning this formulation as a potentially more robust strategy 
for real-world scenarios where unseen variability must be accommodated. 
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Beyond classification accuracy, the assessment of CT (Fig. 28) constitutes a critical 
dimension of model feasibility. The results reveal a clear trade-off between predictive 
performance and computational efficiency. Frameworks incorporating enriched 
representations, such as TFDA, TFDABH, and TFDABS, consistently demand longer CTs 
compared with TDA and FDA. This computational cost was especially pronounced for 
complex models such as LV-RF, where both training and inference phases are 
computationally intensive. By contrast, simpler models like LV-NB and LV-GLM maintain 
relatively low computational demands across all approaches, albeit at the cost of reduced 
accuracy. This trade-off emphasizes the practical consideration that while enriched feature 
domains can maximize predictive performance, their elevated computational cost may 
constrain applicability in real-time or resource-limited contexts. Simpler TDA or FDA 
strategies, though less powerful in absolute accuracy, remain viable alternatives when 
efficiency is prioritized. 
 
These results demonstrate that model performance was jointly conditioned by feature-domain 
representation, classifier complexity, and the NLVs. The persistent training/validation 
discrepancy in Acc across all approaches highlights the central role of regularization and 
model selection strategies in mitigating overfitting. Furthermore, the computational analysis 
shows that the most accurate approaches are not necessarily the most practical, reinforcing 
the importance of balancing predictive reliability with computational efficiency in 
application-specific settings. 
 
 

Fig. 24. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naïve Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis 
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent 
Variable-Generalized Linear Model (LV-GLM) using the frequency-domain approach 
(FDA), shown as a function of the ML hyperparameters and the number of latent variables 
(NLVs) tested. Results of overall accuracy (Acc) are reported separately for the training (75%) 
and the validation (25%) datasets. 



 
 

65 
 

Fig. 25. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naïve Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis 
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent 
Variable-Generalized Linear Model (LV-GLM) using the time-frequency-domain approach 
(TFDA), shown as a function of the ML hyperparameters and the number of latent variables 
(NLVs) tested. Results of overall accuracy (Acc) are reported separately for the training (75%) 
and the validation (25%) datasets. 
 

Fig. 26. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naïve Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis 
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent 
Variable-Generalized Linear Model (LV-GLM) using the time-frequency-domain approach-
block-scale hard (TFDABH), shown as a function of the ML hyperparameters and the number 
of latent variables (NLVs) tested. Results of overall accuracy (Acc) are reported separately 
for the training (75%) and the validation (25%) datasets. 
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Fig. 27. Statistical classification performance of the Latent Variable-Random Forest (LV-
RF), Latent Variable-Naïve Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis 
(LV-LDA), Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent 
Variable-Generalized Linear Model (LV-GLM) using the time-frequency-domain approach-
block-scale soft (TFDABS), shown as a function of the ML hyperparameters and the number 
of latent variables (NLVs) tested. Results of overall accuracy (Acc) are reported separately 
for the training (75%) and the validation (25%) datasets.  
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Fig. 28. Computational time (CT) of the Latent Variable-Random Forest (LV-RF), Latent 
Variable-Naïve Bayes (LV-NB), Latent Variable-Linear Discriminant Analysis (LV-LDA), 
Latent Variable-Quadratic Discriminant Analysis (LV-QDA) and Latent Variable-
Generalized Linear Model (LV-GLM) using the time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain 
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale 
soft (TFDABS), shown as a function of the ML hyperparameters and the number of latent 
variables (NLVs) tested. Results of CT are reported for the training (75%) dataset. 
 
The assessment of RF-VS-LV-SVM models under the TDA (Fig. 29) highlights the 
sensitivity of classification Acc to the choice of kernel function, SVM type, and the 
regularization parameter. Training accuracies tend to remain consistently higher than 
validation accuracies, a pattern that becomes accentuated for larger values of the 
regularization parameter (C = 1000). Kernels such as rbfdot and laplacedot generally provide 
superior training performance, whereas validation performance is more stable for polydot and 
vanilladot. The differences between training and validation results suggests that highly 
flexible kernels, while effective in optimizing the decision boundary during training, increase 
the risk of overfitting. In terms of CT, training with more complex kernels, such as anovadot 
and besseldot, requires significantly longer runtimes, indicating that kernel choice directly 
impacts computational feasibility. 
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When the same model is applied considering the FDA (Fig. 30), the overall performance 
patterns remain consistent, but the validation accuracies improve relative to TDA. This 
improvement indicates that spectral representations enhance the discriminative structure of 
the data, particularly when combined with regularization. For example, the rbfdot kernel 
achieves balanced results with reduced gaps between training and validation accuracies, 
especially for intermediate C values (C = 500.5). However, the CT under FDA is generally 
higher than in TDA, reflecting the added complexity of frequency-domain feature extraction. 
The improvement in generalization combined with the computational penalty emphasizes the 
importance of balancing accuracy gains with processing cost. 
 
The integration of temporal and spectral features through the TFDA (Fig. 31) further 
amplifies these observations. The highest training accuracies are consistently achieved under 
this configuration, particularly for rbfdot and laplacedot KF. Validation accuracies also 
improve compared with both TDA and FDA, indicating that joint time-frequency 
representations provide richer discriminatory information. Nevertheless, the gap between 
training and validation remains significant in models using high-capacity kernels, especially 
under the C-svc type with large regularization constants. CT reach their maximum under 
TFDA, confirming that while enriched representations boost predictive performance, they 
impose a heavy computational load during training. 
 
The introduction of block-scale constraints modifies these trend. By using the TFDABH (Fig. 
32), training performance exhibits sharp increases across most KFs, but validation 
performance does not scale proportionally, thereby widening the discrepancy. Kernels with 
strong non-linear mapping capacity, such as rbfdot, display pronounced overfitting, while 
simpler kernels maintain lower but more stable validation accuracies. Computational times 
under TFDABH are consistently higher than in TFDA, highlighting the additional cost 
introduced by block-scale partitioning. Conversely, in the TFDABS (Fig. 33) yields more 
balanced outcomes. Training Acc values were slightly lower than under TFDABH, but 
validation Acc are consistently higher and less variable across KF and C values. The reduced 
gap between training and validation suggests that the soft-block constraint provides an 
effective balance between model flexibility and generalization. Computational costs under 
TFDABS remain elevated but are somewhat reduced compared with TFDABH, which 
reinforces the potential of this approach as a more computationally efficient compromise. 
 
A comparison with the RF-VS-LV-RF (Fig. 34) model reveals complementary trends. The 
RF-based framework benefits less from kernel flexibility but is highly sensitive to the NTs 
and DTe depth. Training Acc tend to saturate rapidly with increasing NTs, whereas validation 
accuracies plateau at lower levels, highlighting the diminishing returns of increasing 
ensemble size. Computational time rises nearly linearly with NTs, reflecting the inherent cost 
of ensemble growth. Across all domain approaches, RF models are computationally heavier 
than Naïve Bayes or GLM counterparts but lighter than SVMs with complex KF. 
 
The RF-VS-LV-NB (Fig. 35) model exhibits markedly different behavior. Performance is 
less sensitive to hyperparameter tuning, with LS exerting only marginal influence on both 
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training and validation Acc. Compared with SVM and RF models, NB shows more modest 
peak accuracies but narrower gaps between training and validation sets, suggesting reduced 
overfitting. CT remain minimal across all approaches, establishing NB as a computationally 
efficient though less competitive classifier in terms of absolute performance. 
 
Finally, the performance of RF-VS-LV-LDA, RF-VS-LV-QDA, and RF-VS-LV-GLM (Fig. 
36) underscores the influence of classifier complexity as a function of the different feature 
data approaches tested. LDA and GLM deliver consistently low accuracies, with a small 
difference in Acc between training and validation datasets, reflecting limited predictive 
capability despite their robustness against overfitting. In contrast, QDA attains higher training 
Acc but exhibits pronounced overfitting, particularly under TFDA and TFDABH, where 
validation performance decreased sharply. Although these models achieve the shortest CT 
(Figs. 36B, 36D, 36F, 36H and 36J), their limited classification power positions them as 
suitable only for resource-constrained settings where efficiency is prioritized over accuracy. 
The comparative analysis confirms that predictive performance was highly influenced by the 
interaction between data approach, classifier complexity, and hyperparameter configuration 
of these models.  



 
 

70 
 

Fig. 29. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-domain 
approach (TDA), shown as a function of the SVM hyperparameters. Results of overall 
accuracy (Acc) are reported as a mean ± standard deviation separately for the training (75%) 
and the validation (25%) datasets. Furthermore, computational time (CT) is also presented a 
mean ± standard deviation for the training process. Kernel functions (rbfdot, polydot, 
laplacedot, vanilladot, besseldot, and anovadot), SVM’ type (C-svc and nu-svc) and 
regularization parameter (C; 100, 500.5, and 1000).  
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Fig. 30. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the frequency-domain 
approach (FDA), shown as a function of the SVM hyperparameters. Results of overall 
accuracy (Acc) are reported as a mean ± standard deviation separately for the training (75%) 
and the validation (25%) datasets. Furthermore, computational time (CT) is also presented a 
mean ± standard deviation for the training process. Kernel functions (rbfdot, polydot, 
laplacedot, vanilladot, besseldot, and anovadot), SVM’ type (C-svc and nu-svc) and 
regularization parameter (C; 100, 500.5, and 1000).  
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Fig. 31. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-frequency-
domain approach (TFDA), shown as a function of the SVM hyperparameters. Results of 
overall accuracy (Acc) are reported as a mean ± standard deviation separately for the training 
(75%) and the validation (25%) datasets. Furthermore, computational time (CT) is also 
presented a mean ± standard deviation for the training process. Kernel functions (rbfdot, 
polydot, laplacedot, vanilladot, besseldot, and anovadot), SVM’ type (C-svc and nu-svc) and 
regularization parameter (C; 100, 500.5, and 1000).  
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Fig. 32. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-frequency-
domain approach-block-scale hard (TFDABH), shown as a function of the SVM 
hyperparameters. Results of overall accuracy (Acc) are reported as a mean ± standard 
deviation separately for the training (75%) and the validation (25%) datasets. Furthermore, 
computational time (CT) is also presented a mean ± standard deviation for the training 
process. Kernel functions (rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot), 
SVM’ type (C-svc and nu-svc) and regularization parameter (C; 100, 500.5, and 1000).  
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Fig. 33. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Support Vector Machine (RF-VS-LV-SVM) using the time-frequency-
domain approach-block-scale soft (TFDABS), shown as a function of the SVM 
hyperparameters. Results of overall accuracy (Acc) are reported as a mean ± standard 
deviation separately for the training (75%) and the validation (25%) datasets. Furthermore, 
computational time (CT) is also presented a mean ± standard deviation for the training 
process. Kernel functions (rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot), 
SVM’ type (C-svc and nu-svc) and regularization parameter (C; 100, 500.5, and 1000).  
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Fig. 34. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Random Forest (RF-VS-LV-RF) using the time-domain approach (TDA), 
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain 
approach-block-scale soft (TFDABS), shown as a function of the RF hyperparameters. 
Results of overall accuracy (Acc) are reported as a mean ± standard deviation separately for 
the training (75%) and the validation (25%) datasets. Additionally, computational time (CT) 
is also presented a mean ± standard deviation for the training process. DTe (decision tree), 
NTs (number of trees).  
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Fig. 35. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Naïve Bayes (RF-VS-LV-NB) using the time-domain approach (TDA), 
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain 
approach-block-scale soft (TFDABS), shown as a function of the NB hyperparameters. 
Results of overall accuracy (Acc) are reported as a mean ± standard deviation separately for 
the training (75%) and the validation (25%) datasets. Additionally, computational time (CT) 
is also presented a mean ± standard deviation for the training process. LS (Laplace 
Smoothing).  
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Fig. 36. Statistical classification performance of the Random Forest-Variable Selection-
Latent Variable-Linear Discriminant Analysis (RF-VS-LV-LDA), Random Forest-Variable 
Selection-Latent Variable-Quadratic Discriminant Analysis (RF-VS-LV-QDA) and Random 
Forest-Variable Selection-Latent Variable-Generalized Linear Model Analysis (RF-VS-LV-
GLM) using the time-domain approach (TDA), frequency-domain approach (FDA), time-
frequency-domain approach (TFDA), time-frequency-domain approach-block-scale hard 
(TFDABH) and time-frequency-domain approach-block-scale soft (TFDABS). Results of 
overall accuracy (Acc) are reported as a mean ± standard deviation separately for the training 
(75%) and the validation (25%) datasets. Additionally, computational time (CT) is also 
presented a mean ± standard deviation for the training process. 

 

The application of PLSR modeling strategy provides an advanced framework to assess the 
statistical classification performance of LV-ML and RF-VS-LV-ML models while 
simultaneously accounting for hyperparameter configuration, NLVs, and domain-specific 
data representations (TDA, FDA, TFDA, TFDABH and TFDABS). In the case of LV-SVM, 
the PLSR model (Fig. 37) reveals that KF, SVM’s type (C-svc vs. nu-svc), and the C 
parameters were among the most influential factors driving predictive performance accuracy. 
Models employing non-linear KF such as rbfdot and laplacedot achieve higher AccT, but these 
gains are often accompanied by wider discrepancies with AccV, suggesting model overfitting. 
Performance indicators such as Se, Sp, Pr, Re, and Fs follow similar trends, with higher values 
consistently observed in the training dataset compared with validation. The RMSETR and 
RMSECV, R2 and Q2 values confirmed that there was a slightly difference between model 
fitting for training and cross-validation datasets. Variables with higher VIP scores include 
TFDA, TFDABH, TFDABS, Type, all of KF and NVLs, highlighting the importance of these 
variables in influence of the statistical performance of LV-SVM model. While variables such 
as C and RS did not significantly influence the responses. 
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When the screened PLSR model is considered (Fig. 38), where variables with VIP<0.5 (TDA, 
FDA, C=100, C=500, C=1000 and RS) are removed, robustness is improved and spurious 
correlations are reduced. The results show a more balanced relationship between training and 
validation performance. This result indicated that variable screening enhances the stability of 
the PLSR interpretation and reduces noise introduced by low-influence regressors.  
 
The analysis of the LV-RF using the PLSR (Fig. 39) demonstrates a distinct dependency on 
ensemble hyperparameters, specifically the NTs and DTe. Training accuracies approach 
saturation rapidly as NTs increase, whereas validation accuracies plateau earlier, 
emphasizing diminishing returns in ensemble expansion. The VIP analysis highlights NTs as 
one of the most critical predictors, with large ensembles (NTs ≥ 5000) leading to high training 
fitting results but limited improvement in validation performance. Performance metrics such 
as MCC and AUC reinforce this pattern, showing consistently higher training values 
compared with validation. Removal of low-VIP regressors improves the interpretability of 
the model but does not fully mitigate the overfitting tendency of large ensembles. 
 
The PLSR modeling fitting on the LV-NB (Fig. 40) results provides a contrasting perspective. 
In this model, the influence of hyperparameters was less pronounced, with LS contributing 
only marginally to performance. The model yields moderate training accuracies but relatively 
stable validation accuracies, with smaller gaps between R2 and Q2 compared with SVM or 
RF. Pr, Re, and Fs values were lower than in LV-SVM and LV-RF but balanced across training 
and validation datasets, indicating limited overfitting. VIP analysis places greater weight on 
the NVLs, suggesting that classification performance was highly dependent of the NVLs used 
in the model training irrespective of the data approach used and the applications of LS. 
 
In the case of LV-LDA (Fig. 41), PLSR results confirm the stability of this linear classifier. 
Validation accuracies remain close to training values, and R2 and Q2 show smaller 
discrepancies relative to more complex models. Although overall accuracy is lower than that 
of LV-SVM or LV-RF, performance measures such as sensitivity and specificity are 
consistent across training and validation, reflecting good generalization. Low RMSECV 
values and modest RSS confirm the model’s robustness. Variables with higher VIP scores 
include NLVs and data representation, again pointing to the feature extraction stage as the 
most critical determinant of performance in LDA. 
 
Conversely, the LV-QDA (Fig. 42) displays higher training accuracies but reduced 
generalization capability. Discrepancies between R2 and Q2 are more pronounced than in 
LDA, and RMSECV values increase, indicating susceptibility to overfitting. Performance 
indicators such as recall and F-score are elevated for training but drop considerably for 
validation datasets. VIP analysis highlights the strong dependence on NLVs, which, when set 
too high, introduce variance increases. The LV-GLM (Fig. 43) exhibits intermediate 
behavior, with performance metrics indicating modest but reliable classification capacity. R2 

and Q2 values are generally aligned, and residual errors remain moderate. Se and Pr show less 
fluctuation between training and validation compared with QDA, highlighting GLM as a 
more stable alternative compared to LV-LDA and LV-QDA . 
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When PLSR is applied to models incorporating RF-VS, additional patterns emerge. For RF-
VS-LV-SVM (Fig. 44), Type and KF continue to influence the statistical figures of merit of 
models. The RF-VS-LV-RF (Fig. 45) shows similar trends, with ensemble hyperparameters 
remaining critical, but with reduced overfitting compared with LV-RF, confirming that 
variable screening moderates excessive variance introduced in the model. 
 

Fig. 37. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Support Vector Machines (LV-SVM) 
model considering simultaneously the data approach: time-domain approach (TDA), 
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain 
approach-block-scale soft (TFDABS), and the SVM’s hyperparameters and number of latent 
variables (NLVs). NPLSR (computed number of PLSR components), R2 (coefficient of 
determination for training dataset), Q2 (coefficient of determination for K-Fold cross 
validation dataset), RMSETR (root mean square error for training dataset), RMSECV (root 
mean square error for K-Fold cross validation dataset), RSS (residual sum squares), T2 
(Hotelling’s T-squared), VIP (variable Importance for the projection), KF (kernel functions; 
rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot), type (C-svc and nu-svc), C 
(regularization parameter; 100, 500.5, and 1000), AccT (overall accuracy for training dataset), 
AccV (overall accuracy for validation dataset), SeT (sensibility for training dataset), SeV 

(sensibility for validation dataset), SpT (specificity for training dataset), SpV (specificity for 
validation dataset), PrT (precision for training dataset), PrV (precision for validation dataset), 
ReT (recall for training dataset), ReV (recall for validation dataset), FsT (F-score for training 
dataset), FsV (F-score for validation dataset), AUCT (area under the Receiver Operating 
Characteristic curve for training dataset), AUCT (area under the Receiver Operating 
Characteristic curve for validation dataset), MCCT (Matthews correlation coefficient for 
training dataset) and MCCV (Matthews correlation coefficient for validation dataset).  
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Fig. 38. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Support Vector Machines (LV-SVM) 
model considering simultaneously the data approach: time-domain approach (TDA), 
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain 
approach-block-scale soft (TFDABS), and the SVM’s hyperparameters and number of latent 
variables (NLVs). Results of the PLSR model are presented for the screened model; regressor 
variables with VIP values lower than 0.5 were removed to improve model robustness. NPLSR 
(computed number of PLSR components), R2 (coefficient of determination for training 
dataset), Q2 (coefficient of determination for K-Fold cross validation dataset), RMSETR (root 
mean square error for training dataset), RMSECV (root mean square error for K-Fold cross 
validation dataset), RSS (residual sum squares), T2 (Hotelling’s T-squared), VIP (variable 
Importance for the projection), KF (kernel functions; rbfdot, polydot, laplacedot, vanilladot, 
besseldot, and anovadot), type (C-svc and nu-svc), C (regularization parameter; 100, 500.5, 
and 1000), AccT (overall accuracy for training dataset), AccV (overall accuracy for validation 
dataset), SeT (sensibility for training dataset), SeV (sensibility for validation dataset), SpT 

(specificity for training dataset), SpV (specificity for validation dataset), PrT (precision for 
training dataset), PrV (precision for validation dataset), ReT (recall for training dataset), ReV 
(recall for validation dataset), FsT (F-score for training dataset), FsV (F-score for validation 
dataset), AUCT (area under the Receiver Operating Characteristic curve for training dataset), 
AUCT (area under the Receiver Operating Characteristic curve for validation dataset), MCCT 
(Matthews correlation coefficient for training dataset) and MCCV (Matthews correlation 
coefficient for validation dataset). 
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Fig. 39. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Random Forest (LV-RF) model 
considering simultaneously the data approach: time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain 
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale 
soft (TFDABS), and the RF’s hyperparameters and number of latent variables (NLVs). 
Results of the PLSR model are presented for the screened model; regressor variables with 
VIP values lower than 0.5 were removed to improve model robustness. NPLSR (computed 
number of PLSR components), R2 (coefficient of determination for training dataset), Q2 
(coefficient of determination for K-Fold cross validation dataset), RMSETR (root mean square 
error for training dataset), RMSECV (root mean square error for K-Fold cross validation 
dataset), RSS (residual sum squares), T2 (Hotelling’s T-squared), VIP (variable Importance 
for the projection), DTe (decision tree), NTs (number of trees; 50, 500 1000 5000 10000), 
AccT (overall accuracy for training dataset), AccV (overall accuracy for validation dataset), SeT 

(sensibility for training dataset), SeV (sensibility for validation dataset), SpT (specificity for 
training dataset), SpV (specificity for validation dataset), PrT (precision for training dataset), 
PrV (precision for validation dataset), ReT (recall for training dataset), ReV (recall for 
validation dataset), FsT (F-score for training dataset), FsV (F-score for validation dataset), 
AUCT (area under the Receiver Operating Characteristic curve for training dataset), AUCT 
(area under the Receiver Operating Characteristic curve for validation dataset), MCCT 
(Matthews correlation coefficient for training dataset) and MCCV (Matthews correlation 
coefficient for validation dataset). 
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Fig. 40. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Naïve Bayes (LV-NB) model 
considering simultaneously the data approach: time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain 
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale 
soft (TFDABS), and the NB’s hyperparameters and number of latent variables (NLVs). 
Results of the PLSR model are presented for the screened model; regressor variables with 
VIP values lower than 0.5 were removed to improve model robustness. NPLSR (computed 
number of PLSR components), R2 (coefficient of determination for training dataset), Q2 
(coefficient of determination for K-Fold cross validation dataset), RMSETR (root mean square 
error for training dataset), RMSECV (root mean square error for K-Fold cross validation 
dataset), RSS (residual sum squares), T2 (Hotelling’s T-squared), VIP (variable Importance 
for the projection), AccV (overall accuracy for validation dataset), SeT (sensibility for training 
dataset), SeV (sensibility for validation dataset), SpT (specificity for training dataset), SpV 

(specificity for validation dataset), PrT (precision for training dataset), PrV (precision for 
validation dataset), ReT (recall for training dataset), ReV (recall for validation dataset), FsT (F-
score for training dataset), FsV (F-score for validation dataset), AUCT (area under the Receiver 
Operating Characteristic curve for training dataset), AUCT (area under the Receiver 
Operating Characteristic curve for validation dataset), MCCT (Matthews correlation 
coefficient for training dataset) and MCCV (Matthews correlation coefficient for validation 
dataset). 
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Fig. 41. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Linear Discriminant Analysis (LV-
LDA) model considering simultaneously the data approach: time-domain approach (TDA), 
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain 
approach-block-scale soft (TFDABS), and number of latent variables (NLVs). Results of the 
PLSR model are presented for the screened model; regressor variables with VIP values lower 
than 0.5 were removed to improve model robustness. NPLSR (computed number of PLSR 
components), R2 (coefficient of determination for training dataset), Q2 (coefficient of 
determination for K-Fold cross validation dataset), RMSETR (root mean square error for 
training dataset), RMSECV (root mean square error for K-Fold cross validation dataset), RSS 
(residual sum squares), T2 (Hotelling’s T-squared), VIP (variable Importance for the 
projection), AccV (overall accuracy for validation dataset), SeT (sensibility for training dataset), 
SeV (sensibility for validation dataset), SpT (specificity for training dataset), SpV (specificity 
for validation dataset), PrT (precision for training dataset), PrV (precision for validation 
dataset), ReT (recall for training dataset), ReV (recall for validation dataset), FsT (F-score for 
training dataset), FsV (F-score for validation dataset), AUCT (area under the Receiver 
Operating Characteristic curve for training dataset), AUCT (area under the Receiver 
Operating Characteristic curve for validation dataset), MCCT (Matthews correlation 
coefficient for training dataset) and MCCV (Matthews correlation coefficient for validation 
dataset). 
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Fig. 42. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Quadratic Discriminant Analysis (LV-
QDA) model considering simultaneously the data approach: time-domain approach (TDA), 
frequency-domain approach (FDA), time-frequency-domain approach (TFDA), time-
frequency-domain approach-block-scale hard (TFDABH) and time-frequency-domain 
approach-block-scale soft (TFDABS), and number of latent variables (NLVs). Results of the 
PLSR model are presented for the screened model; regressor variables with VIP values lower 
than 0.5 were removed to improve model robustness. NPLSR (computed number of PLSR 
components), R2 (coefficient of determination for training dataset), Q2 (coefficient of 
determination for K-Fold cross validation dataset), RMSETR (root mean square error for 
training dataset), RMSECV (root mean square error for K-Fold cross validation dataset), RSS 
(residual sum squares), T2 (Hotelling’s T-squared), VIP (variable Importance for the 
projection), AccV (overall accuracy for validation dataset), SeT (sensibility for training dataset), 
SeV (sensibility for validation dataset), SpT (specificity for training dataset), SpV (specificity 
for validation dataset), PrT (precision for training dataset), PrV (precision for validation 
dataset), ReT (recall for training dataset), ReV (recall for validation dataset), FsT (F-score for 
training dataset), FsV (F-score for validation dataset), AUCT (area under the Receiver 
Operating Characteristic curve for training dataset), AUCT (area under the Receiver 
Operating Characteristic curve for validation dataset), MCCT (Matthews correlation 
coefficient for training dataset) and MCCV (Matthews correlation coefficient for validation 
dataset). 
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Fig. 43. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Latent Variable-Generalized Linear Model (LV-GLM) 
considering simultaneously the data approach: time-domain approach (TDA), frequency-
domain approach (FDA), time-frequency-domain approach (TFDA), time-frequency-domain 
approach-block-scale hard (TFDABH) and time-frequency-domain approach-block-scale 
soft (TFDABS), and number of latent variables (NLVs). Results of the PLSR model are 
presented for the screened model; regressor variables with VIP values lower than 0.5 were 
removed to improve model robustness. NPLSR (computed number of PLSR components), 
R2 (coefficient of determination for training dataset), Q2 (coefficient of determination for K-
Fold cross validation dataset), RMSETR (root mean square error for training dataset), 
RMSECV (root mean square error for K-Fold cross validation dataset), RSS (residual sum 
squares), T2 (Hotelling’s T-squared), VIP (variable Importance for the projection), AccV 

(overall accuracy for validation dataset), SeT (sensibility for training dataset), SeV (sensibility 
for validation dataset), SpT (specificity for training dataset), SpV (specificity for validation 
dataset), PrT (precision for training dataset), PrV (precision for validation dataset), ReT (recall 
for training dataset), ReV (recall for validation dataset), FsT (F-score for training dataset), FsV 
(F-score for validation dataset), AUCT (area under the Receiver Operating Characteristic 
curve for training dataset), AUCT (area under the Receiver Operating Characteristic curve for 
validation dataset), MCCT (Matthews correlation coefficient for training dataset) and MCCV 
(Matthews correlation coefficient for validation dataset). 



 
 

86 
 

Fig. 44. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Random Forest-Variable Selection-Latent Variable-
Support Vector Machines (RF-VS-LV-SVM) model considering simultaneously the data 
approach: time-domain approach (TDA), frequency-domain approach (FDA), time-
frequency-domain approach (TFDA), time-frequency-domain approach-block-scale hard 
(TFDABH) and time-frequency-domain approach-block-scale soft (TFDABS) and the 
SVM’s hyperparameters. Results of the PLSR model are presented for the screened model; 
regressor variables with VIP values lower than 0.5 were removed to improve model 
robustness. NPLSR (computed number of PLSR components), R2 (coefficient of 
determination for training dataset), Q2 (coefficient of determination for K-Fold cross 
validation dataset), RMSETR (root mean square error for training dataset), RMSECV (root 
mean square error for K-Fold cross validation dataset), RSS (residual sum squares), T2 
(Hotelling’s T-squared), VIP (variable Importance for the projection), KF (kernel functions; 
rbfdot, polydot, laplacedot, vanilladot, besseldot, and anovadot), type (C-svc and nu-svc), C 
(regularization parameter; 100, 500.5, and 1000), AccT (overall accuracy for training dataset), 
AccV (overall accuracy for validation dataset), SeT (sensibility for training dataset), SeV 

(sensibility for validation dataset), SpT (specificity for training dataset), SpV (specificity for 
validation dataset), PrT (precision for training dataset), PrV (precision for validation dataset), 
ReT (recall for training dataset), ReV (recall for validation dataset), FsT (F-score for training 
dataset), FsV (F-score for validation dataset), AUCT (area under the Receiver Operating 
Characteristic curve for training dataset), AUCT (area under the Receiver Operating 
Characteristic curve for validation dataset), MCCT (Matthews correlation coefficient for 
training dataset) and MCCV (Matthews correlation coefficient for validation dataset). 



 
 

87 
 

Fig. 45. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of Random Forest-Variable Selection-Latent Variable-
Random Forest (RF-VS-LV-RF) model considering simultaneously the data approach: time-
domain approach (TDA), frequency-domain approach (FDA), time-frequency-domain 
approach (TFDA), time-frequency-domain approach-block-scale hard (TFDABH) and time-
frequency-domain approach-block-scale soft (TFDABS) and the RF’s hyperparameters. 
Results of the PLSR model are presented for the screened model; regressor variables with 
VIP values lower than 0.5 were removed to improve model robustness. NPLSR (computed 
number of PLSR components), R2 (coefficient of determination for training dataset), Q2 
(coefficient of determination for K-Fold cross validation dataset), RMSETR (root mean square 
error for training dataset), RMSECV (root mean square error for K-Fold cross validation 
dataset), RSS (residual sum squares), T2 (Hotelling’s T-squared), VIP (variable Importance 
for the projection), DTe (decision tree), NTs (number of trees; 50, 500, 1000, 5000 and 
10000), AccT (overall accuracy for training dataset), AccV (overall accuracy for validation 
dataset), SeT (sensibility for training dataset), SeV (sensibility for validation dataset), SpT 

(specificity for training dataset), SpV (specificity for validation dataset), PrT (precision for 
training dataset), PrV (precision for validation dataset), ReT (recall for training dataset), ReV 
(recall for validation dataset), FsT (F-score for training dataset), FsV (F-score for validation 
dataset), AUCT (area under the Receiver Operating Characteristic curve for training dataset), 
AUCT (area under the Receiver Operating Characteristic curve for validation dataset), MCCT 
(Matthews correlation coefficient for training dataset) and MCCV (Matthews correlation 
coefficient for validation dataset). 
 
The statistical results in the use of PLSR for modeling and multi-objective optimizing the 
LV-ML and RF-VS-LV-ML models are summarized in Table 14 to 20.  
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Table 14. Statistical results of Partial Least Square Regression (PLSR) model fitting to assess 
the influence of data approach, hyperparameters belonging to the Latent Variable-Support 
Vector Machine (LV-SVM) and Latent Variable-Random Forest (LV-RF) and the number of 
latent variables (NLVs) used in model tunning. 

LV-SVM 

Variable 
Raw model Screened model 

VIP Goodness of fit VIP Goodness of fit 
TDA 0.375 

ONPLSR= 2 
R2= 28.1% 
Q2= 28% 
RMSETR= 3.34 
RMSECV= 3.59 

ns 

ONPLSR= 2 
R2= 27.8% 
Q2= 27.7% 
RMSETR= 3.35 
RMSECV= 3.59 

FDA 0.336 ns 

TFDA 0.443 0.554 

TFDABH 0.579 0.572 

TFDABS 1.174 0.953 

Type 0.529 0.530 

rbfdot 1.127 0.912 

polydot 0.958 0.777 

laplacedot 1.437 1.163 

vanilladot 0.948 0.769 

besseldot 2.428 1.969 

anovadot 1.063 0.860 

C=100 0.012 ns 

C=500.5 0.004 ns 

C=1000 0.015 ns 

NLVs 1.542 1.250 

RS 0.080 ns 

LV-RF 

Variable 
Raw model Screened model 

VIP Goodness of fit VIP Goodness of fit 
TDA 0.206 

ONPLSR=2 
R2= 66.9% 
Q2= 66.8% 
RMSETR= 1.66 
RMSEcv= 1.92 

ns 

ONPLSR= 2 
R2= 66.8% 
Q2= 66.7% 
RMSETR= 1.67 
RMSEcv= 1.92 

FDA 0.009 ns 

TFDA 0.064 ns 

TFDABH 0.074 ns 

TFDABS 0.076 ns 

DTe 2.924 2.924 

NTs=50 0.547 0.547 

NTs=500 0.592 0.592 

NTs=1000 0.595 0.595 

NTs=5000 0.597 0.597 

NTs=10000 0.597 0.597 

NLVs 1.635 1.635 

RS 0.029 ns 
TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency-domain approach), TFDABH (time-frequency-
domain approach-block-scale hard), TFDABS (time-frequency-domain approach-block-scale soft), VIP (variable importance for the 
projection), ONPLSR (optimal number of PLSR components), R2 (coefficient of determination for training dataset), Q2 (coefficient of 
determination for K-Fold cross validation dataset), RMSETR (root mean square error for training dataset), RMSECV (root mean square error 
for K-Fold cross validation dataset), RS (replication of runs), kernel functions (rbfdot, polydot, laplacedot, vanilladot, besseldot, and 
anovadot), C (regularization parameter), DTe (decision tree) and NTs (number of trees). 
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Table 15. Statistical results of Partial Least Square Regression (PLSR) model fitting to assess 
the influence of data approach, hyperparameters belonging to the Latent Variable-Naïve 
Bayes (LV-NB) and Latent Variable-Linear Discriminant Analysis (LV-LDA) and the 
number of latent variables (NLVs) used in model tunning. 

LV-NB 

Variable 
Raw model Screened model 

VIP Goodness of fit VIP Goodness of fit 

TDA 0.032 

ONPLSR= 1 
R2= 63.5% 
Q2= 63.3% 
RMSETR= 1.61 
RMSECV= 1.82 

ns 

ONPLSR= 1 
R2= 63.2% 
Q2= 63.1% 
RMSETR= 1.62 
RMSECV= 1.87 

FDA 0.211 ns 

TFDA 0.079 ns 

TFDABH 0.043 ns 

TFDABS 0.057 ns 

LS=0 0.000 ns 

LS=1 0.000 ns 

NLVs 2.990 1.000 

RS 0.035 ns 
LV-LDA 

Variable 
Raw model Screened model 

VIP Goodness of fit VIP Goodness of fit 

TDA 0.029 

ONPLSR= 1 
R2= 52.1% 
Q2= 52.0% 
RMSETR= 1.61 
RMSECV= 1.72 

ns 

ONPLSR= 1 
R2= 58.4% 
Q2= 58.3% 
RMSETR= 1.01 
RMSECV= 1.24 

FDA 0.006 ns 

TFDA 0.008 ns 

TFDABH 0.005 ns 

TFDABS 0.010 ns 

NLVs 2.645 1.000 

RS 0.033 ns 
TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency-domain approach), TFDABH 
(time-frequency-domain approach-block-scale hard), TFDABS (time-frequency-domain approach-block-scale soft), VIP 
(variable importance for the projection), ONPLSR (optimal number of PLSR components), R2 (coefficient of determination 
for training dataset), Q2 (coefficient of determination for K-Fold cross validation dataset), RMSETR (root mean square error 
for training dataset), RMSECV (root mean square error for K-Fold cross validation dataset), RS (replication of runs) and LS 
(Laplace Smoothing).  
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Table 16. Statistical results of Partial Least Square Regression (PLSR) model fitting to assess 
the influence of data approach, hyperparameters belonging to the Latent Variable-Quadratic 
Discriminant Analysis (LV-QDA) and Latent Variable-Generalized Linear Model (LV-
GLM) and the number of latent variables (NLVs) used in model tunning. 

LV-QDA 

Variable 
Raw model Screened model 

VIP Goodness of fit VIP Goodness of fit 

TDA 0.022 

ONPLSR= 1 
R2= 55.4% 
Q2= 55.3% 
RMSETR= 1.83 
RMSECV= 2.05 

ns 

ONPLSR= 1 
R2= 55.4% 
Q2= 55.3% 
RMSETR= 1.83 
RMSECV= 2.10 

FDA 0.027 ns 

TFDA 0.022 ns 

TFDABH 0.035 ns 

TFDABS 0.034 ns 

NLVs 2.644 1.000 

RS 0.075 ns 
LV-GLM 

Variable 
Raw model Screened model 

VIP Goodness of fit VIP Goodness of fit 

TDA 0.013 

ONPLSR= 1 
R2= 53.6% 
Q2= 53.5% 
RMSETR= 1.83 
RMSECV= 2.01 

ns 

ONPLSR= 1 
R2= 53.6% 
Q2= 53.5% 
RMSETR= 1.83 
RMSECV= 2.01 

FDA 0.030 ns 

TFDA 0.011 ns 

TFDABH 0.016 ns 

TFDABS 0.016 ns 

NLVs 2.645 1.000 

RS 0.048 ns 
TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency-domain approach), TFDABH 
(time-frequency-domain approach-block-scale hard), TFDABS (time-frequency-domain approach-block-scale soft), VIP 
(variable importance for the projection), ONPLSR (optimal number of PLSR components), R2 (coefficient of determination 
for training dataset), Q2 (coefficient of determination for K-Fold cross validation dataset), RMSETR (root mean square error 
for training dataset), RMSECV (root mean square error for K-Fold cross validation dataset) and RS (replication of runs).  



 
 

91 
 

Table 17. Statistical results of Partial Least Square Regression (PLSR) model fitting to assess 
the influence of data approach and hyperparameters belonging to each Machine Learning 
model.  

Random Forest-Variable Selection-Latent Variable-Support Vector Machine (RF-VS-LV-SVM) 

Variable 
Raw model Screened model 

VIP Goodness of fit VIP Goodness of fit 

TDA 0.099 

ONPLSR= 2 
R2= 62.5% 
Q2= 61.2% 

RMSETR= 1.79 
RMSECV= 2.10 

ns 

ONPLSR= 2 
R2= 62.0% 
Q2= 61.1% 

RMSETR= 1.79 
RMSECV= 2.10 

FDA 0.149 ns 

TFDA 0.091 ns 

TFDABH 0.180 ns 

TFDABS 0.035 ns 

Type 1.420 0.943 

rbfdot 0.780 0.518 

polydot 1.271 0.844 

laplacedot 0.933 0.619 

vanilladot 1.271 0.844 

besseldot 2.542 1.688 

anovadot 1.642 1.090 

C=100 0.019 ns 

C=500.5 0.004 ns 

C=1000 0.023 ns 

RS 0.203 ns 
Random Forest-Variable Selection-Latent Variable-Random Forest (RF-VS-LV-RF) 

Variable 
Raw model Screened model 

VIP Goodness of fit VIP Goodness of fit 

TDA 0.047 

ONPLSR= 1 
R2= 53.7% 
Q2= 50.8% 

RMSETR= 0.65 
RMSECV= 0.92 

ns 

ONPLSR= 1 
R2= 53.7% 
Q2= 51.9% 

RMSETR= 0.65 
RMSECV= 0.89 

FDA 0.038 ns 

TFDA 0.039 ns 

TFDABH 0.028 ns 

TFDABS 0.001 ns 

DTe 3.161 3.161 

NTs=50 0.606 0.606 

NTs=500 0.643 0.643 

NTs=1000 0.635 0.635 

NTs=5000 0.644 0.644 

NTs=10000 0.634 0.634 

RS 0.043 ns 

Models RF-VS-LV-NB* RF-VS-LV-LDA* 

RF-VS-LV-QDA* RF-VS-LV-GLM* 
TDA (time-domain approach), FDA (frequency-domain approach), TFDA (time-frequency-domain approach), TFDABH (time-frequency-
domain approach-block-scale hard), TFDABS (time-frequency-domain approach-block-scale soft), VIP (variable importance for the 
projection), ONPLSR (optimal number of PLSR components), R2 (coefficient of determination for training dataset), Q2 (coefficient of 
determination for K-Fold cross validation dataset), RMSETR (root mean square error for training dataset), RMSECV (root mean square error 
for K-Fold cross validation dataset), RS (replication of runs), kernel functions (rbfdot, polydot, laplacedot, vanilladot, besseldot, and 
anovadot), C (regularization parameter), DTe (decision tree) and NTs (number of trees). *No model was built because the first predictive 
component was already not significant. 
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Table 18. Multi-objective optimized Latent Variable-Machine Learning (LV-ML) models 
for maximizing bone fragment detection in chicken breast samples. Results are expressed as 
mean ± standard error and presented separately for training (75%) and validation (25%) 
datasets. 

Goodness 
of fit 

Optimized models 

LV-SVM LV-RF LV-NB LV-LDA 

Configuration 
i) TFDA 
ii) Type: C-svc  
iii) KF: anovadot 
iv) C=100 
v) NLVs=69 

Configuration 
i) TFDA 
ii) NTs=50 
iii) NLVs=71 

 

Configuration 
i) TFDABH 
ii) LS=1 
iii) NVLs=69 

 

Configuration 
i) FDA 
ii) NLVs=3 

 

Acc (%) Training: 100.00 ± 0.00aA 
Validation: 98.05 ± 2.24aA 

Training: 100.00 ± 0.00aA  
Validation: 99.02 ± 1.26aA 

Training: 98.26 ± 0.91aA 
Validation: 97.56 ± 2.30aA 

Training: 81.24 ± 2.31bA 
Validation: 82.20 ± 4.75bA 

Se 
Training: 1.00 ± 0.00 

Validation: 0.99 ± 0.02 
Training: 1.00 ± 0.00  

Validation: 1.00 ± 0.00 
Training: 1.00 ± 0.00  

Validation: 1.00 ± 0.00 
Training: 0.84 ± 0.03 

Validation: 0.83 ± 0.08 

Sp 
Training: 1.00 ± 0.00 

Validation: 0.98 ± 0.04 
Training: 1.00 ± 0.00 

Validation: 0.98 ± 0.03 
Training: 0.96 ± 0.02  
Validation:0.95 ± 0.04 

Training: 0.78 ± 0.02 
Validation: 0.82 ± 0.09 

Fs 
Training: 1.00 ± 0.00 

Validation: 0.98 ± 0.02 
Training: 1.00 ± 0.00 

Validation: 0.99 ± 0.01 
Training: 0.98 ± 0.01 

 Validation:0.97 ± 0.02 
Training:0.82 ± 0.03 

Validation: 0.82 ± 0.05 

Pr 
Training: 1.00 ± 0.00 

Validation: 0.98 ± 0.05 
Training: 1.00 ± 0.00 

Validation: 0.98 ± 0.03 
Training: 0.97 ± 0.02 

Validation: 0.95 ± 0.04 
Training: 0.80 ± 0.03 
Validation:0.81 ± 0.10 

Re 
Training: 1.00 ± 0.00 

Validation: 0.99 ± 0.02 
Training: 1.00 ± 0.00 

Validation: 1.00 ± 0.00 
Training: 1.00 ± 0.00  

Validation: 1.00 ± 0.00 
Training: 0.84 ± 0.03 

Validation: 0.83 ± 0.08 

AUC 
Training: 1.00 ± 0.00 

Validation: 0.98 ± 0.02 
Training: 1.00 ± 0.00 

Validation: 0.99 ± 0.01 
Training: 0.98 ± 0.01 

Validation: 0.98 ± 0.02 
Training: 0.81 ± 0.02 

Validation: 0.83 ± 0.05 

MCC 
Training: 1.00 ± 0.00  

Validation: 0.96 ± 0.04 
Training: 1.00 ± 0.00 

Validation: 0.98 ± 0.03 
Training: 0.97 ± 0.02  

Validation: 0.95 ± 0.04 
Training: 0.62 ± 0.05 

Validation: 0.65 ± 0.10 

TP 
Training: 60 ± 2 

Validation: 20 ± 1 
Training: 60 ± 3 

Validation: 21 ± 3 
Training: 62 ± 3 

Validation: 19 ± 3 
Training: 52 ± 4 

Validation: 16 ± 2 

TN Training: 61 ± 2 
Validation: 20 ± 1 

Training: 61 ± 3 
Validation: 20 ± 3 

Training: 57 ± 3 
Validation: 21 ± 3 

Training: 47 ± 3 
Validation:17 ± 2 

FP 
Training: 0 ± 0  

Validation: 0 ± 0 
Training: 0 ± 0 

Validation: 0 ± 0 
Training:0 ± 0 

Validation: 0 ± 0 
Training: 10 ± 2 
Validation: 3 ± 2 

FN Training: 0 ± 0 
Validation: 0 ± 1 

Training: 0 ± 0 
Validation:0 ± 1 

Training: 2 ± 1 
Validation: 1 ± 1 

Training: 13 ± 2 
Validation:4 ± 2 

CT (s) Training: 0.237 ± 0.009a Training: 0.013 ± 0.007b Training: 0.007 ± 0.008c Training:0.056 ± 0.011d 

Acc (overall accuracy), Se (sensibility), Sp (specificity), Pr (precision), Re (recall), Fs (F-score), AUC (area under the Receiver 
Operating Characteristic curve), MCC (Matthews correlation coefficient), CT (computation time), FDA (frequency-domain 
approach), TFDA (time-frequency-domain approach), TFDABH (time-frequency-domain approach-block-scale hard), KF 
(kernel function), C (regularization parameter), NTs (number of trees), LS (Laplace Smoothing), and NLVs (number of latent variables). 
Lowercase letters indicate statistically significant differences (p<0.05) between models, while uppercase letters indicate 
statistically significant differences (p<0.05) between the goodness-of-fit performance of training and validation datasets.  
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Table 19. Multi-objective optimized Latent Variable-Machine Learning (LV-ML) and 
Random Forest-Variable Selection-Latent Variable-Machine Learning (RF-VS-LV-ML) 
models for maximizing bone fragment detection in chicken breast samples. Results are 
expressed as mean ± standard error and presented separately for training (75%) and validation 
(25%) datasets. 

Goodness  
of fit 

Optimized models 

LV-QDA LV-GLM RF-VS-LV-SVM RF-VS-LV-RF 

Configuration 
i) TDA 
ii) NVLs=3 

 

Configuration 
i) TDA 
ii) NVLs=10 

 

Configuration 
        i) TFDABS 
        ii) Type: C-svc,  

iii) KF: anovadot 
iv) C=100 

Configuration 
i) FDA 
ii) NTs=50 

 
 

Acc (%) Training: 81.98 ± 2.67bA 
Validation: 80.49 ± 5.39bA 

Training: 83.72 ± 1.56bA 
Validation: 83.41 ± 4.42bA 

Training: 100.00 ± 0.00aA 
Validation: 98.05 ± 1.54aA 

Training: 100.00 ± 0.00aA 
Validation: 99.27 ± 1.18aA 

Se 
Training: 0.84 ± 0.04 

Validation: 0.80 ± 0.07 
Training: 0.86 ± 0.02 

Validation: 0.83 ± 0.07 
Training: 1.00 ± 0.00 

Validation: 0.99 ± 0.02 
Training: 1.00 ± 0.00 

Validation: 1.00 ± 0.00 

Sp 
Training: 0.80 ± 0.03 

Validation: 0.82 ± 0.09 
Training: 0.81 ± 0.02 

Validation: 0.84 ± 0.09 
Training: 1.00 ± 0.00 

Validation: 0.97 ± 0.03 
Training: 1.00 ± 0.00 

Validation: 0.99 ± 0.02 

Fs 
Training: 0.82 ± 0.03 

Validation: 0.80 ± 0.06 
Training: 0.84 ± 0.01 

Validation: 0.83 ± 0.04 
Training: 1.00 ± 0.00 

Validation: 0.98 ± 0.02 
Training: 1.00 ± 0.00 

Validation: 0.99 ± 0.01 

Pr 
Training: 0.81 ± 0.03 

Validation: 0.80 ± 0.10 
Training: 0.82 ± 0.01 

Validation: 0.84 ± 0.08 
Training: 1.00 ± 0.00 

Validation: 0.97 ± 0.03 
Training: 1.00 ± 0.00 

Validation: 0.99 ± 0.02 

Re 
Training: 0.84 ± 0.04 

Validation: 0.80 ± 0.07 
Training: 0.86 ± 0.02 

Validation: 0.83 ± 0.07 
Training: 1.00 ± 0.00 

Validation: 0.99 ± 0.02 
Training: 1.00 ± 0.00 

Validation: 1.00 ± 0.00 

AUC 
Training: 0.82 ± 0.03 

Validation: 0.81 ± 0.06 
Training: 0.84 ± 0.02 

Validation: 0.83 ± 0.05 
Training: 1.00 ± 0.00 

Validation: 0.98 ± 0.01 
Training: 1.00 ± 0.00 

Validation: 0.99 ± 0.01 

MCC Training: 0.64 ± 0.05 
Validation: 0.61 ± 0.11 

Training: 0.67 ± 0.03 
Validation: 0.67 ± 0.09 

Training: 1.00 ± 0.00 
Validation: 0.96 ± 0.03 

Training: 1.00 ± 0.00 
Validation: 0.99 ± 0.02 

TP 
Training: 51 ± 4 

Validation: 16 ± 2 
Training: 53 ± 2 

Validation: 16 ± 2 
Training: 60 ± 3 

Validation: 20 ± 3 
Training: 60 ± 2 

Validation: 21 ± 2 

TN Training: 48 ± 4 
Validation: 17 ± 2 

Training: 48 ± 3 
Validation: 18 ± 3 

Training: 61 ± 3 
Validation: 20 ± 3 

Training: 61 ± 2 
Validation: 20 ± 2 

FP 
Training: 10 ± 2 
Validation: 4 ± 2 

Training: 8 ± 1 
Validation: 3 ± 1 

Training: 0 ± 0 
Validation: 0 ± 0 

Training: 0 ± 0 
Validation: 0 ± 0 

FN Training: 12 ± 2 
Validation: 4 ± 2 

Training: 11 ± 1 
Validation: 3 ± 2 

Training: 0 ± 0 
Validation: 1 ± 1 

Training: 0 ± 0 
Validation: 0 ± 0 

CT (s) Training: 0.054 ± 0.010d Training: 0.052 ± 0.010d Training: 0.086 ± 0.009e Training: 0.006 ± 0.008c 
Acc (overall accuracy), Se (sensibility), Sp (specificity), Pr (precision), Re (recall), Fs (F-score), AUC (area under the Receiver 
Operating Characteristic curve), MCC (Matthews correlation coefficient), CT (computation time), TDA (time-domain 
approach), FDA (frequency-domain approach), TFDABS (time-frequency-domain approach-block-scale soft), KF (kernel 
function), C (regularization parameter), NTs (number of trees) and NLVs (number of latent variables). Lowercase letters indicate 
statistically significant differences (p<0.05) between models, while uppercase letters indicate statistically significant 
differences (p<0.05) between the goodness-of-fit performance of training and validation datasets.  
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Table 20. Multi-objective optimized Random Forest-Variable Selection-Latent Variable-
Machine Learning (RF-VS-LV-ML) models for maximizing bone fragment detection in 
chicken breast samples. Results are expressed as mean ± standard error and presented 
separately for training (75%) and validation (25%) datasets. 

Goodness 
of fit 

Optimized models 

RF-VS-LV-NB RF-VS-LV-LDA RF-VS-LV-QDA RF-VS-LV-GLM 
Configuration 

i) TFDA 
ii) LS=1 

Configuration 
i) TFDABS 

 

Configuration 
i) TDA 

 

Configuration 
i) TFDABS 

 

Acc (%) 
Training: 97.93 ± 1.47aA 

Validation: 97.07 ± 3.78aA 
Training: 90.00 ± 1.76cA 

Validation: 78.78 ± 6.90bB 
Training: 99.75 ± 0.40aA 

Validation: 74.63 ± 6.92cB 
Training: 97.36 ± 4.44aA 

Validation: 79.51 ± 6.82bB 

Se 
Training: 1.00 ± 0.01 

Validation: 1.00 ± 0.00 
Training: 0.89 ± 0.03 

Validation: 0.73 ± 0.17 
Training: 0.99 ± 0.01 

Validation: 0.98 ± 0.03 
Training: 0.98 ± 0.04 

Validation: 0.74 ± 0.16 

Sp 
Training: 0.96 ± 0.03 

Validation: 0.95 ± 0.07 
Training: 0.91 ± 0.04 

Validation: 0.85 ± 0.07 
Training: 1.00 ± 0.00 

Validation: 0.49 ± 0.13 
Training: 0.97 ± 0.05 

Validation: 0.84 ± 0.09 

Fs 
Training: 0.98 ± 0.01 

Validation: 0.97 ± 0.04 
Training: 0.90 ± 0.02 

Validation: 0.76 ± 0.12 
Training: 1.00 ± 0.00 

Validation: 0.80 ± 0.06 
Training: 0.97 ± 0.04 

Validation: 0.77 ± 0.12 

Pr 
Training: 0.96 ± 0.02 

Validation: 0.94 ± 0.07 
Training: 0.91 ± 0.02 

Validation: 0.82 ± 0.08 
Training: 1.00 ± 0.00 

Validation: 0.68 ± 0.09 
Training: 0.97 ± 0.05 

Validation: 0.83 ± 0.07 

Re 
Training: 1.00 ± 0.01 

Validation: 1.00 ± 0.00 
Training: 0.89 ± 0.03 

Validation: 0.73 ± 0.17 
Training: 0.99 ± 0.01 

Validation: 0.98 ± 0.03 
Training: 0.98 ± 0.04 

Validation: 0.74 ± 0.16 

AUC 
Training: 0.98 ± 0.01 

Validation: 0.97 ± 0.03 
Training: 0.90 ± 0.02 

Validation: 0.79 ± 0.07 
Training: 1.00 ± 0.00 

Validation: 0.74 ± 0.06 
Training: 0.97 ± 0.04 

Validation: 0.79 ± 0.07 

MCC 
Training: 0.96 ± 0.03 

Validation: 0.94 ± 0.07 
Training: 0.80 ± 0.04 

Validation: 0.59 ± 0.13 
Training: 1.00 ± 0.00 

Validation: 0.55 ± 0.11 
Training: 0.95 ± 0.09 

Validation: 0.60 ± 0.13 

TP 
Training: 60 ± 4 

Validation: 20 ± 4 
Training: 54 ± 4 

Validation: 15 ± 4 
Training: 59 ± 3 

Validation: 21 ± 3 
Training: 59 ± 3 

Validation: 15 ± 4 

TN 
Training: 58 ± 4 

Validation: 19 ± 3 
Training: 55 ± 5 

Validation: 18 ± 2 
Training: 61 ± 3 

Validation: 10 ± 3 
Training: 58 ± 5 

Validation: 18 ± 3 

FP Training: 0 ± 0 
Validation: 0 ± 0 

Training: 6 ± 2 
Validation: 6 ± 4 

Training: 0 ± 0 
Validation: 0 ± 1 

Training: 1 ± 3 
Validation: 5 ± 3 

FN 
Training: 2 ± 2 

Validation: 1 ± 2 
Training: 6 ± 2 

Validation: 3 ± 2 
Training: 0 ± 0 

Validation: 10 ± 3 
Training: 2 ± 3 

Validation: 3 ± 2 
CT (s) Training: 0.005 ± 0.007c Training: 0.002 ± 0.006c Training: 0.006 ± 0.008c Training: 0.005 ± 0.007c 

Acc (overall accuracy), Se (sensibility), Sp (specificity), Pr (precision), Re (recall), Fs (F-score), AUC (area under the Receiver 
Operating Characteristic curve), MCC (Matthews correlation coefficient), CT (computation time), TDA (time-domain 
approach), TFDA (time-frequency-domain approach), TFDABS (time-frequency-domain approach-block-scale soft) and LS 
(Laplace Smoothing). Lowercase letters indicate statistically significant differences (p<0.05) between models, while 
uppercase letters indicate statistically significant differences (p<0.05) between the goodness-of-fit performance of training 
and validation datasets. 
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The statistical PLSR results on LV-SVM model (Table 14), showed that a the PLSR fit with 
ONPLSR= 2 yields modest explanatory power (R2= 28.1%, Q2= 28.0%, RMSETR= 3.34 and 
RMSECV= 3.59), and the screened specification preserves essentially the same generalization 
(R2= 27.8%, Q2 = 27.7%, RMSETR= 3.35 and RMSECV = 3.59), indicating that pruning low-
influence regressors enhances parsimony without changing performance. VIP values 
revealed that the Type and KF mostly influence the statistical performance results: laplacedot 
(VIP 1.437 to 1.163), besseldot (2.428 to 1.969), rbfdot (1.127 to 0.912), anovadot (1.063 to 
0.860), and polydot/vanilladot (0.95 to 0.77) retained important influence after model 
screening, whereas the SVM regularization parameter C was not statistically significant in 
the tested range (VIP= 0.01-0.02; non-significant post-screening). The SVM “type” (C-svc 
vs nu-svc) remains moderately informative (VIP= 0.53 in both stages). The NVLs exhibited 
a high VIP (1.542 to 1.250), confirming that latent dimensionality is a primary lever for bias-
variance control in this classifier. Data domain approach (TDA, FDA, TFDA, TFDABH and 
TFDABS) carries mixed raw VIPs, TFDABS is relatively large in the raw model (1.174) but 
attenuates post-screening (0.953), which signals redundancy between domain features and 
kernel-latent interactions. RS was negligible (VIP= 0.08; non-significant), manifesting that 
the data partition of the experimental dataset did not affect the goodness of fit of model in 
both training and validation sets. 

In the LV-RF model (Table 14), ONPLSR= 2 with high goodness of fit (R2= 66.9%, Q2= 
66.8%, RMSETR= 1.66 and RMSECV = 1.92) that remains stable after screening (R2= 66.8% 
and Q2= 66.7%). The results showed that the DTe mostly influence the goodness of fit metrics 
(VIP= 2.924, unchanged after screening) and the ensemble size NTs were consistently 
influential (VIP= 0.55–0.60 for NTs= 50, 500, 1000, 5000, 10000), while NLVs also ranks 
high (VIP= 1.635). Data-domain indicators show very low VIPs and drop to non-significance 
upon screening, which implies that the statistical performance in RF is driven by ensemble 
architecture rather than by the data approach used. 

Regarding to eh LV-NB (Table 15), the results indicated that this model was largely 
controlled by latent dimensionality. With ONPLSR= 1, the raw model attains R2= 63.5% and 
Q2= 63.3% (RMSETR= 1.61 and RMSECV= 1.82) and the screened model maintains similar 
generalization (R2 = 63.2% and Q2= 63.1%; RMSECV = 1.87). NLVs shows a very high VIP 
that collapses to unity after screening (2.990 to 1.000), while LS was not significant (VIP= 0 
for both LS levels). Domain variables have small VIPs and become non-significant under 
screening, supporting the view that the NB decision surface benefits mainly from how the 
latent space was parameterized. For LV-LDA, ONPLSR= 1 with a notable improvement due 
to screening: R2/Q2 rise from 52.1 to 52.0% and 58.4 to 58.3%, and errors drop sharply 
(RMSETR= 1.61 to 1.01 and RMSECV 1.72 to 1.24). Additionally, NLVs concentrates the 
explanatory power (VIP= 2.645 to 1.000), while data approaches were not statistically 
significant.  

Similarly to LV-LDA, the LV-QDA and LV-GLM (Table 16), the LV-QDA, used an 
ONPLSR= 1 with R2 = 55.4% and Q2= 55.3% in both raw and screened models; RMSECV 
increases slightly after screening (2.05 to 2.10), a tolerable bias increment exchanged for 
interpretability. NLVs drives the performance (VIP 2.644 to 1.000), whereas domain 
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variables remain weak. The GLM fit is similarly stable (ONPLSR= 1; R2/Q2= 53.6/53.5% 
unchanged by screening; RMSECV = 2.01), with NLVs again showed the highest  importance 
(VIP 2.645 to 1.000) and data approaches remained non-significance.  

Regarding the RF-VS based models (Table 17) which quantify how this strategy of variable 
selection interacts with downstream classifiers. For RF-VS-LV-SVM, ONPLSR= 2 with R2= 
62.5% and Q2= 61.2% (RMSETR= 1.79 and RMSECV = 2.10) and a screened specification 
that preserves Q2 (62.0% to 61.1%). The SVM type remains highly informative after 
screening (VIP 1.420 to 0.943), and the KF  continues to be the principal determinant of 
variability: besseldot (2.542 to 1.688) and anovadot (1.642 to 1.090) lead, followed by 
polydot and vanilladot (1.27 to 0.844) and then laplacedot and rbfdot (0.93 and 0.78 raw; 
0.62 and 0.52 screened). The C parameter was also negligible (VIP= 0.02; non-significant), 
and data approach become non-significant after screening. PLSR model fitting on the RF-
VS-LV-RF results (Table 17) used ONPLSR= 1 with moderate fit and generalization (R2= 
53.7%; Q2= 51-52%; RMSETR= 0.65 and RMSECV= 0.89 to 0.92) that is again stable after 
screening. DTe remains the dominating factor (VIP= 3.161), NTs holds substantial influence 
(VIP= 0.60-0.64), and domain indicators are weak and non-significant. Notably, no PLSR 
was retained for RF-VS-LV-NB, RF-VS-LV-LDA, RF-VS-LV-QDA and RF-VS-LV-GLM 
because the first predictive component was already not significant, which is consistent with 
the earlier observation that these models were mainly influenced by NLVs and simple 
structural choices that RF-VS has already filtered. 

The multi-objective optimized LV-ML (Table 18) established the best configuration of SVM 
model to maximize the BF detection capability. The best performing optimized LV-SVM 
model was defined by employing TFDA data approach, Type: C-svc, KF: anovadot, C=100 
(or any of the other two, C=500.5 or C=1000) and NLVs= 69. Using this configuration, the 
model reached AccT= 100.00 ± 0.00% and AccV= 98.05 ± 2.24%,, with AUCT=1.00 and 
AUCV=0.98 and MCCT= 1.00 and MCCV=0.96; CT was moderate (0.237 s). LV-RF model 
using TFDA, NTs= 50 and NLVs= 71, achieved AccT= 100.00 ± 0.00% and AccV= 99.02 ± 
1.26% with AUCT=1.00 and AUCV=0.99 and MCCT= 1.00 and MCCV=0.98, but with a 
significantly lower CT (0.013 s), indicating a superior accuracy-efficiency balance within the 
LV-ML. LV-NB by employing TFDABH with LS= 1 and NLVs= 69 sustains high validation 
(97.56 ± 2.30%) and strong MCC (0.95) at minimal computational cost (0.007 s), positioning 
NB as an ultra-efficient alternative with only a small performance gap relative to SVM/RF. 
LV-LDA under FDA with NLVs= 3 provided stable but lower ceilings (AccV= 82.20% and 
MCCV= 0.65) with moderate time (0.056 s). 

The results of LV-ML and RF-VS-LV-ML (Table 19) comparison in reveals the decisive 
effect of RF-VS when coupled with high-capacity learners. RF-VS-LV-SVM with TFDABS, 
C-svc, anovadot and C = 100 achieved AccT=100.00 ± 0.00% and AccV= 98.05 ± 1.54%, with 
high Se, Sp, Pr, Re, AUC and MCC at a higher cost than RF (0.086 s). RF-VS-LV-RF with 
FDA and NTs= 50 delivered the strongest validated performance among all models (AccV= 
99.27 ± 1.18% and SeV, SpV and MCCV >0.99) with the lowest CT reported in the table (0.006 
s). LV-QDA and LV-GLM models exhibited a low goodness of fit with Acc <80% in both 
training and validation datasets. 
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The statistical results of RF-VS-LV-NB using TFDA and LS= 1 exhibited AccV= 97.07 ± 
3.78%, AUCV 0.97 and MCCV 0.94 and an extremely low CT (0.005 s), making it a 
compelling choice when throughput dominates. RF-VS-LV-QDA trained on TDA exhibits 
marked overfitting, AccT= 99.75 ± 0.40% compared to AccV= 74.63 ± 6.92%, which indicates 
that quadratic boundaries inflate variance in this latent regime unless covariance shrinkage 
or stricter dimensionality control is imposed. RF-VS-LV-GLM under TFDABS shows 
intermediate behavior (AccV=79.51%) and RF-VS-LV-LDA under TFDABS remains the 
lowest among the hybrids in validation (AccV= 78.78%). 

The global PLSR modeling integrating all optimized models (Fig. 46) highlights systematic 
relationships across all classifiers. Models with higher flexibility, such as LV-SVM and LV-
RF, achieve the highest training accuracies and associated R2 values, but also exhibit the 
largest gaps in Q2 and validation metrics. By contrast, simpler models such as LV-NB, LV-
LDA, and LV-GLM achieve lower peak performance but present more balanced training-
validation behavior, as reflected in their MCC and AUC values. Hybrid approaches involving 
RF-based variable selection consistently show improved generalization relative to their non-
screened counterparts, particularly for RF-VS-LV-SVM and RF-VS-LV-RF models, 
confirming the importance of dimensionality reduction in mitigating overfitting. The overall 
PLSR results emphasize that model selection cannot rely solely on training accuracy but must 
be informed by validation-oriented metrics such as Q2, RMSECV, AUCV and MCCV as well 
as by VIP-based screening to identify the most influential hyperparameters and data 
approaches. Subsequently, the use of PLSR model in the multi-objective optimization process 
allowed to determine that the RF-VS-LV-RF was the most accurate with the minimal CT 
model in the detection of BF within chicken breast samples. Thus, this model was considered 
as the best performing model in all frameworks and strategies tested. Additionally, the 
ANOVA results for Acc and CT (Section 2.7.2.3) revealed statistically significant differences 
(p<0.05) across all optimized models. The homogeneous groups defined by LSD intervals 
further indicated that the RF-VS-LV-RF model was the most effective for detecting BF in 
chicken breast samples, as it achieved significantly higher Acc and lower CT (p<0.05).  
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Fig. 46. Partial Least Square Regression (PLSR) modeling to assess the statistical 
classification performance results of the optimized Latent Variable-Support Vector Machines 
(LV-SVM), Latent Variable-Random Forest (LV-RF), Latent Variable-Naïve Bayes (LV-
NB), Latent Variable-Linear Discriminant Analysis (LV-LDA), Latent Variable-Quadratic 
Discriminant Analysis (LV-QDA), Latent Variable-Generalized Linear Model (LV-GLM), 
Random Forest-Variable Selection-Latent Variable-Support Vector Machines (RF-VS-LV-
SVM), Random Forest-Variable Selection-Latent Variable-Random Forest (RF-VS-LV-RF), 
Random Forest-Variable Selection-Latent Variable-Naïve Bayes (RF-VS-LV-NB), Random 
Forest-Variable Selection-Latent Variable- Linear Discriminant Analysis (RF-VS-LV-
LDA), Random Forest-Variable Selection-Latent Variable- Quadratic Discriminant Analysis 
(RF-VS-LV-QDA) and Random Forest-Variable Selection-Latent Variable- Generalized 
Linear Model (RF-VS-LV-GLM) models. NPLSR (computed number of PLSR components), 
R2 (coefficient of determination for training dataset), Q2 (coefficient of determination for K-
Fold cross validation dataset), RMSETR (root mean square error for training dataset), 
RMSECV (root mean square error for K-Fold cross validation dataset), RSS (residual sum 
squares), T2 (Hotelling’s T-squared), VIP (variable Importance for the projection), AccT 

(overall accuracy for training dataset), AccV (overall accuracy for validation dataset), SeT 

(sensibility for training dataset), SeV (sensibility for validation dataset), SpT (specificity for 
training dataset), SpV (specificity for validation dataset), PrT (precision for training dataset), 
PrV (precision for validation dataset), ReT (recall for training dataset), ReV (recall for 
validation dataset), FsT (F-score for training dataset), FsV (F-score for validation dataset), 
AUCT (area under the Receiver Operating Characteristic curve for training dataset), AUCT 
(area under the Receiver Operating Characteristic curve for validation dataset), MCCT 
(Matthews correlation coefficient for training dataset) and MCCV (Matthews correlation 
coefficient for validation dataset).  
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The optimization of LVs through RF-VS-LV-RF revealed critical insights into feature 
selection and model calibration. Using the MDA criterion, the RF model identified a subset 
of LVs with maximal contribution to classification accuracy (Fig. 47A). This eigenspace was 
subsequently employed within the RF-VS-LV-RF framework, resulting in the best-
performing optimized model when using frequency-domain features (RF-VS-LV-RF-FDA). 
The MDA-based ranking highlights that spectral descriptors extracted from the ultrasound 
frequency distribution provide the strongest differentiation power between control samples 
and those containing BF. Among the most relevant variables, energy-magnitude parameters 
such as M0, spectral shape VARsp, SKEsp), KURsp, ENTsp, as well as frequency-domain peaks 
such as Fr and MP, consistently appear in the top 30 FDA features (Figs. 47B to 47H). Their 
elevated importance scores confirm that perturbations in spectral energy distribution, caused 
by acoustic scattering from BF, constitute a robust biomarker for automated classification 
procedure. 
 
The eigenspace defined by the nine most important LVs (as determined by MDA) was further 
analyzed through PC projections (Fig. 48). The three-dimensional score plots reveal a clear 
clustering structure, with separation between control tissues and those containing BF of 
different sizes. Larger defects (2.0 × 1.5 cm, 2.0 × 1.0 cm) form distinct clusters distant from 
control samples, while smaller fragments (1.0 × 0.3 cm and 0.5 × 0.3 cm) remain closer but 
still separable in the reduced eigenspace. The two-dimensional projection of PC70 vs. PC1 
further illustrates the differentiation capacity of the selected eigenspace, with minimal 
overlap across classes. This visualization confirms that the reduced LV space retains the 
essential information required for robust classification, validating the RF-VS feature 
selection strategy.  
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Fig. 47. Optimal Latent Variables (LVs) selected using the Mean Decrease Accuracy (MDA, 
%) criterion from the Random Forest (RF) model. This eigenspace was employed for 
calibration and validation of the Random Forest-Variable Selection-Latent Variable-Random 
Forest (RF-VS-LV-RF) framework. Using frequency-domain (FDA) features to feed the RF-
VS-LV-RF yielded the best-performing optimized model (RF-VS-LV-RF-FDA). Variable 
importance of each LV in maximizing sample classification (with vs. without bone 
fragments) according to RF accuracy (A). Loading plots of the 30 most important FDA 
energy-magnitude-distribution ultrasound parameters ranked by MDA (B to H). Parameters 
include M0 (zero-order moment), Fr (center frequency of the phase spectrum), MP (maximum 
peak of the frequency spectrum), VARsp (spectral variance of the phase spectrum), SKEsp 

(spectral skewness of the phase spectrum), KURsp (spectral kurtosis of the phase spectrum), 
and ENTsp (spectral entropy of the phase spectrum).  

Fig. 48. Three-dimensional score plots of the nine most important Latent Variables (LVs; 
Fig. 47) selected by the Mean Decrease Accuracy (MDA) criterion from the Random Forest-
Variable selection (RF-VS) strategy. Panels (A to C) show representative combinations of 
principal components (PCs) derived from the frequency-domain (FDA) features, while panel 
(D) presents the two-dimensional score projection of PC70 vs PC1 for clustering comparison. 
Sample groups correspond to Control and different bone fragment defect sizes (2.0×1.5 cm, 
2.0×1.0 cm, 1.5×0.3 cm, 1.0×0.3 cm, and 0.5 × 0.3 cm). This selected eigenspace was used 
to feed the RF-VS-LV-RF yielded the best-performing optimized model (RF-VS-LV-RF-
FDA). 
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A deeper validation of the optimized RF-VS-LV-RF-FDA model (NTs= 50) is provided 
(Table 21), where classification performance is evaluated against real BF sizes in chicken 
breast samples. The model achieved perfect detection across all fragment categories, from 
large fragments (2.0×1.5 cm) to the smallest (0.5×0.3 cm), without a single misclassification 
across bone-containing samples (total OC = 81/81 correctly predicted). For control samples, 
the classification was correct in nearly all cases (80/81), with only a single instance of 
misclassification across 100 RS of the experimental dataset. This outcome highlights both 
the robustness and the extremely high sensitivity of the RF-VS-LV-RF-FDA framework, 
capable of identifying even the smallest embedded bone fragments with near-perfect 
accuracy and representing an improvement in the previous detection results based on MIA-
MSPC (Table 13). 
 
The statistical results defined the RF-VS-LV-RF-FDA as the most effective strategy for BF 
detection in chicken breast samples. The integration of FDA features with RF-driven variable 
selection and latent variable compression achieves an optimal balance between accuracy, 
generalization, and computational efficiency. Compared with conventional LV-based 
classifiers, the hybrid framework demonstrates a decisive performance advantage, achieving 
statistical metrics that approach the theoretical upper limit of classification reliability. This 
confirms that the combination of eigenspace optimization, FDA ultrasound feature analysis, 
and ensemble ML strategies constitutes a powerful tool for non-invasive food safety 
monitoring using ultrasound spectroscopy. 
 
 
Table 21. Classification performance of the optimized Random Forest-Variable Selection-
Latent Variable-Random Forest (RF-VS-LV-RF) model using frequency-domain (FDA) 
features, yielding the best-performing configuration (RF-VS-LV-RF-FDA) for detecting 
bone fragments (BF) of varying sizes in chicken breast samples. 

RF-VS-LV-RF-FDA-NTs=50 

 Type of BF Number of samples (real) Number of samples (predicted) 

OC 
(all types) 

2.0×1.5 cm 15 15 
2.0×1.0 cm 17 17 
1.5×0.3 cm 17 17 
1.0×0.3 cm 15 15 
0.5×0.3 cm 17 17 

Total OC 81 81 
Control 81 80* 

NTs (number of random trees), OC (Out-of-Control). *Classification performance of all control samples using 
the RF-VS-LV-RF-FDA model with NTs = 50, failed in at least one sample across the 100 random partitions 
of the experimental dataset.  
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4. Conclusions 

This work provides a comprehensive demonstration of the potential of ultrasound imaging, 
combined with advanced multivariate image analysis and machine learning modeling-
strategies, to achieve robust, accurate, and computationally efficient detection of bone 
fragments in chicken breast based products.  
 
Ultrasound contact imaging has proven to be an effective and valuable technology for 
detecting bone fragments of varying sizes, regardless of their location within the chicken 
breast. The difference in acoustic impedance between the chicken breast and the bone 
fragments, mainly due to the presence of air gaps within bone pieces, significantly 
contributed to increase energy attenuation and changed ultrasound velocity. The detection of 
bone fragments was influenced by their size, although good classification results were found 
for all the different sizes considered. 
 
The energy-magnitude and energy-distribution ultrasound parameters, computed in the time-
frequency domains, effectively detected the bone fragments within chicken breast fillets. 
Both temporal and frequency-based approaches quantified similar information regarding 
ultrasound signal attenuation and alterations in the wave distribution caused by the presence 
of varying sizes of bone fragments. 
 
The Residual Sum Squares multivariate control statistic has proven to be the most robust 
unsupervised model for detecting bone fragments (overall accuracy >95%) within chicken 
breasts, irrespective of the ultrasound parameters (time-frequency) used during the model’s 
tuning. This approach has emerged as a valuable tool for integration into a monitoring system, 
facilitating the classification of contact ultrasound images of control chicken breasts and 
those containing bone fragments. 
 
The integration of Multivariate Image Analysis with Latent Variable-based Machine 
Learning models provides a reliable strategy to enhance the detection of bone fragments in 
chicken breast samples. Compared with purely unsupervised approaches, the proposed 
framework significantly improved overall classification accuracy and robustness across 
fragment sizes (improvement of 3%>). The incorporation of Random Forest-based variable 
selection further reduced computational complexity while increasing model performance, 
confirming the value of combining feature-space dimensionality reduction with Machine 
Learning classification. 
 
The integration of Random Forest-based Variable Selection with Latent Variable-based 
Machine Learning models significantly enhanced the detection of bone fragments while 
reducing model complexity. By combining feature-space dimensionality reduction, 
eigenspace optimization, and Machine Learning classification, this strategy achieved higher 
statistical performance in both training and validation datasets. Further, Mean Decrease 
Accuracy-based variable importance analysis improved detection by ranking latent variables 
derived from the unsupervised approach according to their contribution to Random Forest 
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accuracy. The pruning strategy of the eigenspace retained only the most relevant latent 
variables, thereby maximizing the classification performance for contaminated and 
uncontaminated chicken breast samples. 
 
Partial Least Squares Regression model proved to be a reliable tool for advancing the multi-
objective optimization of Machine Learning models. It enabled the exploration of underlying 
relationships between model hyperparameters, the number of latent variables obtained from 
the unsupervised approach, and data approaches (time, frequency, and time-frequency 
domains). Variable screening using the Variable Importance for the Projection criterion 
computed from the Partial Least Squares Regression model reduced noise and improved 
robustness, while also identifying which hyperparameters and feature types most strongly 
influenced classification performance. This information was then used to optimize models in 
a multi-objective manner, maximizing performance across both training and validation 
datasets. Based on this approach, the optimized Random Forest-Variable Selection-Latent 
Variable-Random Forest model achieved highly accurate detection of bone fragments of 
different sizes (overall accuracy: training=100%, validation=99.27%), enabling real-time 
quality monitoring of bone presence in chicken breast products. The model also combined 
high accuracy with very short training times (0.006 s), clearly outperforming computationally 
heavier alternatives tested.  
 
The multi-objective optimized Random Forest-Variable Selection-Latent Variable-Random 
Forest model revealed that the frequency-domain approach provides the most robust 
fingerprints for bone fragment detection. Particularly, the energy-magnitude and energy-
distribution parameters such as the zero-order moment, maximum peak of phase spectra, 
phase spectrum center frequencies, spectral variance, spectral skewness, spectral kurtosis, 
and spectral entropy proved to be the most relevant ultrasound parameters for maximizing 
the differentiation between control and out-of-control samples. 
 
This research demonstrates that ultrasound imaging, when combined with advanced 
multivariate image analysis, machine learning, and optimization strategies, provides an 
effective approach to food safety monitoring. The proposed multi-objective framework 
ensured that the resulting model was not only accurate, but also generalizable, interpretable, 
and computationally efficient. These findings represent an important step toward the 
development of intelligent, non-invasive monitoring systems for the poultry industry. 
 
Future work should be conducted in order to assess the detection limits of contact ultrasound 
technology for detecting small-sized bone fragments and to detect foreign bodies of different 
nature, such as plastics, glass, and metal pieces, which could also contaminate the chicken 
breast during the manufacturing process. This will be essential to develop a robust industrial 
prototype that can be used for real-time quality monitoring of the entire poultry meat 
production.  



 
 

104 
 

5. Declaration of competing interest 
None. 

6. Formal acknowledgments 
 
The authors express their gratitude for the funding provided by the ULTRADIGITAL project 
(AGROALNEXT/2022/045) as part of the AGROALNEXT program. This program is 
supported by the MCIN, with funding from the European Union NextGenerationEU (PRTR-
C17.I1), as well as the Generalitat Valenciana. Additionally, Gentil A. Collazos-Escobar’s 
doctoral scholarship (PRE2020-092255) is acknowledged, which was granted through the 
State Training Subprogram of the State Plan for Scientific and Technical Research and 
Innovation 2017-2020, in conjunction with the European Social Fund. 
 
I would like to express my deepest gratitude to my M.Sc. advisor, Dr. José Manuel Prats 
Montalbán, for his unwavering support and guidance throughout the entire process of this 
master’s degree. He has always been a constant voice of encouragement and motivation to 
move forward, always willing to explain statistical models and multivariate image analysis 
with patience and clarity. His generosity, kindness, and tireless dedication, together with his 
invaluable support and mentorship, have been fundamental pillars during these years. I feel 
truly fortunate to have had him as a mentor and guide in this journey. It has been a true honor 
to work and collaborate with him, and I sincerely hope to continue our collaboration in the 
future. 
 
I would like to thank Dr. José Vicente García Pérez for his support and for his dedication in 
securing and managing the funding that made this work possible. 
 
I would like to thank Dr. José Javier Benedito Fort for his guidance, dedication, and the many 
hours he devoted to teaching me the analysis of ultrasonic signals and spectra. I am deeply 
grateful for the knowledge he shared with me and for transmitting his critical vision and 
insightful perspective on ultrasonic analysis, which have greatly enriched my work. 
 
I would like to deeply thank M.Sc. Elisa Lincetti for her hard work and dedication in the 
experimental acquisition of ultrasound images, the development of experimental procedures, 
and the formulation and analysis of models. Her commitment, precision, and valuable 
contributions have been fundamental to the progress of this work. 
 
I would like to sincerely thank M.Sc. Maider Aguerralde Martin for her trustworthy support 
in the formulation of PLS models for the multi-objective optimization process of machine 
learning algorithms. Her kind voice of encouragement, generosity, and willingness to share 
her knowledge have been invaluable to me, and her guidance has greatly enriched my work. 
 
I would like to thank M.Sc. Miguel Ángel Vecina for his valuable guidance and support in 
the implementation and understanding of Convolutional Neural Networks. His technical 



 
 

105 
 

expertise, insightful advice, and willingness to help have been of great importance in 
advancing this work. 
 
I would like to thank Dr. Nelson Sinisterra for his valuable contribution to the analysis and 
modeling of different statistical approaches and techniques applied to various parts of this 
work. His expertise and guidance have been essential in strengthening the methodological 
foundation of this research. 
 
Finally, I extend my deepest gratitude to Dr. Eva Vallada Regalado for her unwavering 
support and guidance throughout all the administrative procedures of the master’s program. 
Her kindness, efficiency, and invaluable assistance in managing enrollments, withdrawals, 
extensions, and every administrative matter over these years have made this journey 
considerably smoother.  



 
 

106 
 

7. Informal acknowledgments 
 
To my parents, I dedicate this stage that now comes to an end. Their unconditional love, 
sacrifice, and guidance have been the foundation of my growth, and without their constant 
encouragement and support, reaching this milestone would not have been possible. 
 
To my dear fiancée, Martha Patricia Medina Casas, for her unwavering support, patience, 
and love. Her understanding, encouragement, and constant presence have been a source of 
strength and inspiration throughout this journey. 
 
I would like to express my heartfelt gratitude to my dear friends Walbersy Navarro, Patricia 
Mas Monsonís, Miguel Ángel Vecina García, Maider Aguerralde Martin and Nelson 
Sinisterra for their unwavering friendship, constant support, and for being a guiding and 
encouraging voice throughout this journey.  



 
 

107 
 

8. References 
 

Achata, E.M., Esquerre, C., Gowen, A.A., O’Donnell, C.P., 2018. Feasibility of near 
infrared and Raman hyperspectral imaging combined with multivariate analysis to 
assess binary mixtures of food powders. Powder Technol 336, 555–566. 
https://doi.org/10.1016/j.powtec.2018.06.025 

Algamal, Z.Y., 2018. A new method for choosing the biasing parameter in ridge estimator 
for generalized linear model. Chemometrics and Intelligent Laboratory Systems 183, 
96–101. https://doi.org/10.1016/j.chemolab.2018.10.014 

Ali, M.M., Hashim, N., 2021. Non-destructive methods for detection of food quality, in: 
Future Foods: Global Trends, Opportunities, and Sustainability Challenges. 
Elsevier, pp. 645–667. https://doi.org/10.1016/B978-0-323-91001-9.00003-7 

An, J., Zhang, Z., 2025. Optimizing soft sensor costs through feature selection: A 
comparative study of sensory and chemical parameters in wine grade prediction. 
Chemometrics and Intelligent Laboratory Systems 262. 
https://doi.org/10.1016/j.chemolab.2025.105404 

Babamoradi, H., Van den Berg, F., Rinnan, Å., 2013. Comparison of bootstrap and 
asymptotic confidence limits for control charts in batch MSPC strategies. 
Chemometrics and Intelligent Laboratory Systems 127, 102–111. 
https://doi.org/10.1016/j.chemolab.2013.06.005 

Barrera Jiménez, A. A., Matsunami, K., Van Hauwermeiren, D., Peeters, M., Stauffer, F., 
dos Santos Schultz, E., Kumar, A., De Beer, T., Nopens, I., 2023. Partial least 
squares regression to calculate population balance model parameters from material 
properties in continuous twin-screw wet granulation. Int J Pharm 123040. 
https://doi.org/10.1016/j.ijpharm.2023.123040 

Barrios-Rodriguez, Y., Cordoba-Salazar, G. A., Bahamón-Monje, A. F., Gutiérrez-
Guzmán, N., 2021. Effect of roast degree, preparation method, and variety in the 
sensory and chemical characteristics of coffee (coffea arabica): A mid-infrared 
spectrum analysis. Coffee Sci 16, 1–12. https://doi.org/10.25186/.v16i.1964 

Belaud, J.P., Prioux, N., Vialle, C., Sablayrolles, C., 2019. Big data for agri-food 4.0: 
Application to sustainability management for by-products supply chain. Comput Ind 
111, 41–50. https://doi.org/10.1016/j.compind.2019.06.006 

Bowler, A., Ozturk, S., di Bari, V., Glover, Z.J., Watson, N.J., 2023. Machine learning 
and domain adaptation to monitor yoghurt fermentation using ultrasonic 
measurements. Food Control 147, 109622. 
https://doi.org/10.1016/j.foodcont.2023.109622 

Bowler, A.L., Bakalis, S., Watson, N.J., 2020. Monitoring mixing processes using 
ultrasonic sensors and machine learning. Sensors (Switzerland) 20. 
https://doi.org/10.3390/s20071813 

Brendel, R., Schwolow, S., Rohn, S., Weller, P., 2020. Comparison of PLSR, MCR-ALS 
and Kernel-PLSR for the quantification of allergenic fragrance compounds in 



 
 

108 
 

complex cosmetic products based on nonlinear 2D GC-IMS data. Chemometrics and 
Intelligent Laboratory Systems 205. 
https://doi.org/10.1016/j.chemolab.2020.104128 

Cabana, E., Lillo, R.E., 2022. Robust adjusted discriminant analysis based on shrinkage 
with application to geochemical and environmental fields. Chemometrics and 
Intelligent Laboratory Systems 221. 
https://doi.org/10.1016/j.chemolab.2021.104488 

Caesarendra, W., Tjahjowidodo, T., 2017. A review of feature extraction methods in 
vibration-based condition monitoring and its application for degradation trend 
estimation of low-speed slew bearing. Machines. 
https://doi.org/10.3390/machines5040021 

Caladcad, J.A., Cabahug, S., Catamco, M.R., Villaceran, P.E., Cosgafa, L., Cabizares, 
K.N., Hermosilla, M., Piedad, E.J., 2020. Determining Philippine coconut maturity 
level using machine learning algorithms based on acoustic signal. Comput Electron 
Agric 172. https://doi.org/10.1016/j.compag.2020.105327 

Cavaglia, J., Schorn-García, D., Giussani, B., Ferré, J., Busto, O., Aceña, L., Mestres, M., 
Boqué, R., 2020. Monitoring wine fermentation deviations using an ATR-MIR 
spectrometer and MSPC charts. Chemometrics and Intelligent Laboratory Systems 
201. https://doi.org/10.1016/j.chemolab.2020.104011 

Chauchard, F., Cogdill, R., Roussel, S., Roger, J.M., Bellon-Maurel, V., 2004. 
Application of LS-SVM to non-linear phenomena in NIR spectroscopy: 
Development of a robust and portable sensor for acidity prediction in grapes. 
Chemometrics and Intelligent Laboratory Systems 71, 141–150. 
https://doi.org/10.1016/j.chemolab.2004.01.003 

Chen, H., Liu, X., Jia, Z., Liu, Z., Shi, K., Cai, K., 2018. A combination strategy of 
random forest and back propagation network for variable selection in spectral 
calibration. Chemometrics and Intelligent Laboratory Systems 182, 101–108. 
https://doi.org/10.1016/j.chemolab.2018.09.002 

Chen, Y., Dan, C., He, Y., Zheng, X., 2025. Generalized continuum regression (GCR): 
An advanced multivariate method for precise dimensionality reduction and efficient 
regression modeling. Chemometrics and Intelligent Laboratory Systems 262. 
https://doi.org/10.1016/j.chemolab.2025.105407 

Cho, B.-K., Irudayaraj, J.M.K., 2003. Foreign Object and Internal Disorder Detection in 
Food Materials Using Noncontact Ultrasound Imaging, JOURNAL OF FOOD 
SCIENCE. 

Collazos-Escobar, G.A., Barrios-Rodriguez, Y.F., Bahamón-Monje, A.F., Gutiérrez-
Guzmán, N., 2023a. Uses of mid-infrared spectroscopy and chemometric models for 
differentiating between dried cocoa bean varieties. Revista Brasileira de Engenharia 
Agricola e Ambiental 27, 803–810. https://doi.org/10.1590/1807-
1929/agriambi.v27n10p803-810 



 
 

109 
 

Collazos-Escobar, G.A., Barrios-Rodríguez, Y.F., Bahamón-Monje, A.F., Gutiérrez-
Guzmán, N., 2024. Mid-infrared spectroscopy and machine learning as a 
complementary tool for sensory quality assessment of roasted cocoa-based products. 
Infrared Phys Technol 141. https://doi.org/10.1016/j.infrared.2024.105482 

Collazos-Escobar, G.A., Gutiérrez-Guzmán, N., Váquiro, H.A., García-Pérez, J. V., 
Cárcel, J.A., 2025a. Analysis of Machine Learning Algorithms for the Computer 
Simulation of Moisture Sorption Isotherms of Coffee Beans. Food Bioproc Tech. 
https://doi.org/10.1007/s11947-025-03785-x 

Collazos-Escobar, G.A., Gutiérrez-Guzmán, N., Váquiro-Herrera, H.A., Bon, J., Cárcel, 
J.A., García-Pérez, J. V., 2023b. Model-based investigation of water adsorption in 
Achira (Canna edulis K.) biscuits. LWT 189. 
https://doi.org/10.1016/j.lwt.2023.115472 

Collazos-Escobar, G.A., Hurtado-Cortés, V., Bahamón-Monje, A.F., Gutiérrez-Guzmán, 
N., 2025b. Mathematical modeling of water sorption isotherms in specialty coffee 
beans processed by wet and semidry postharvest methods. Sci Rep 15, 3898. 
https://doi.org/10.1038/s41598-024-83702-y 

Collazos-Escobar, G.A., Lincetti, E., Spilimbergo, S., Prats-Montalbán, J.M., García-
Pérez, J. V., Benedito, J., 2025c. Integrated use of ultrasound imaging and 
multivariate image analysis for detecting bone fragments in poultry meat. Food 
Research International 206. https://doi.org/10.1016/j.foodres.2025.116047 

Collazos-Escobar, G.A., Prats-Montalbán, J.M., Giacomozzi, A.S., Benedito, J., Gómez 
Álvarez-Arenas, T.E., García-Pérez, J. V., 2025d. Non-invasive detection of internal 
foreign bodies in foods by using air-coupled ultrasound: case studies in beef burger 
patties and jelly plates. J Food Eng 112777. 
https://doi.org/10.1016/j.jfoodeng.2025.112777 

Colucci, D., Prats-Montalbán, J.M., Fissore, D., Ferrer, A., 2019. Application of 
multivariate image analysis for on-line monitoring of a freeze-drying process for 
pharmaceutical products in vials. Chemometrics and Intelligent Laboratory Systems 
187, 19–27. https://doi.org/10.1016/j.chemolab.2019.02.004 

Conde, T., Mulet, A., Clemente, G., Benedito, J., 2008. Detection of internal cracks in 
manchego cheese using the acoustic impulse-response technique and ultrasounds. J 
Dairy Sci 91, 918–927. https://doi.org/10.3168/jds.2007-0661 

Corona, E., Garcia-Perez, J. V., Gomez Alvarez-Arenas, T.E., Watson, N., Povey, 
M.J.W., Benedito, J., 2013. Advances in the ultrasound characterization of dry-cured 
meat products. J Food Eng 119, 464–470. 
https://doi.org/10.1016/j.jfoodeng.2013.06.023 

Correia, L.R., Mittal, G.S., Basir, O.A., 2008. Ultrasonic detection of bone fragment in 
mechanically deboned chicken breasts. Innovative Food Science and Emerging 
Technologies 9, 109–115. https://doi.org/10.1016/j.ifset.2007.06.004 



 
 

110 
 

Costa, N., Lourenço, J., 2023. Assessing the resilience of optimal solutions in 
multiobjective problems. Chemometrics and Intelligent Laboratory Systems 239. 
https://doi.org/10.1016/j.chemolab.2023.104850 

Craig, A.P., Botelho, B.G., Oliveira, L.S., Franca, A.S., 2018. Mid infrared spectroscopy 
and chemometrics as tools for the classification of roasted coffees by cup quality. 
Food Chem 245, 1052–1061. https://doi.org/10.1016/j.foodchem.2017.11.066 

Cristina Duarte Marques, R., Resende Oliveira, É., Silva Mendes Coutinho, G., 
Emannuele Chaves Ribeiro, A., Souza Teixeira, C., Soares Soares Júnior, M., 
Caliari, M., 2020. Modeling sorption properties of maize by-products obtained using 
the Dynamic Dewpoint Isotherm (DDI) method. Food Biosci 38. 
https://doi.org/10.1016/j.fbio.2020.100738 

de Andrade, B.M., de Gois, J.S., Xavier, V.L., Luna, A.S., 2020. Comparison of the 
performance of multiclass classifiers in chemical data: Addressing the problem of 
overfitting with the permutation test. Chemometrics and Intelligent Laboratory 
Systems 201. https://doi.org/10.1016/j.chemolab.2020.104013 

Debón, A., Carlos Garcia-Díaz, J., 2012. Fault diagnosis and comparing risk for the steel 
coil manufacturing process using statistical models for binary data. Reliab Eng Syst 
Saf 100, 102–114. https://doi.org/10.1016/j.ress.2011.12.022 

Dixon, S.J., Brereton, R.G., 2009. Comparison of performance of five common classifiers 
represented as boundary methods: Euclidean Distance to Centroids, Linear 
Discriminant Analysis, Quadratic Discriminant Analysis, Learning Vector 
Quantization and Support Vector Machines, as dependent on data structure. 
Chemometrics and Intelligent Laboratory Systems 95, 1–17. 
https://doi.org/10.1016/j.chemolab.2008.07.010 

Djekic, I., Jankovic, D., Rajkovic, A., 2017. Analysis of foreign bodies present in 
European food using data from Rapid Alert System for Food and Feed (RASFF). 
Food Control 79, 143–149. https://doi.org/10.1016/j.foodcont.2017.03.047 

Duchesne, C., Liu, J.J., MacGregor, J.F., 2012. Multivariate image analysis in the process 
industries: A review. Chemometrics and Intelligent Laboratory Systems. 
https://doi.org/10.1016/j.chemolab.2012.04.003 

Duma, Z.S., Susiluoto, J., Lamminpää, O., Sihvonen, T., Reinikainen, S.P., Haario, H., 
2024. KF-PLS: Optimizing Kernel Partial Least-Squares (K-PLS) with Kernel 
Flows. Chemometrics and Intelligent Laboratory Systems 254. 
https://doi.org/10.1016/j.chemolab.2024.105238 

Edward, M. C., Stringer, M. F. 2007. Observations on patterns in foreign material 
investigations. Food Control, 18, 773-782. 
https://doi.org/10.1016/j.foodcont.2006.01.007 

El Zein, A.K., Cobre, A. de F., Luna Lazo, R.E., Antunes, K.A., Manfron, J., Ferreira, 
L.M., Pontarolo, R., 2025. Identification of Monteverdia ilicifolia by fourier-
transform mid-infrared spectroscopy associated with chemometrics and machine 



 
 

111 
 

learning. Chemometrics and Intelligent Laboratory Systems 263. 
https://doi.org/10.1016/j.chemolab.2025.105420 

Eriksson, L., Johansson, E., Antti, H., & Holmes, E. 2016. Multi-and Megavariate Data 
Analysis: Finding and Using Regularities in Metabonomics Data. Metabolomics in 
Toxicity Assesment. Chapter 8. DOI: https://doi.org/10.1201/b14117  

Eskelinen, J.J., Alavuotunki, A.P., Hæggström, E., Alatossava, T., 2007. Preliminary 
study of ultrasonic structural quality control of swiss-type cheese. J Dairy Sci 90, 
4071–4077. https://doi.org/10.3168/jds.2007-0105 

Fang, X., Ye, H., Zhang, S., Guo, L., Xu, Y., Zhang, D., Nie, Q., 2023. Investigation of 
potential genetic factors for growth traits in yellow-feather broilers using weighted 
single-step genome-wide association study. Poult Sci 102. 
https://doi.org/10.1016/j.psj.2023.103034 

Fariñas, L., Contreras, M., Sanchez-Jimenez, V., Benedito, J., Garcia-Perez, J. V., 2021a. 
Use of air-coupled ultrasound for the non-invasive characterization of the textural 
properties of pork burger patties. J Food Eng 297. 
https://doi.org/10.1016/j.jfoodeng.2021.110481 

Fariñas, L., Sanchez-Torres, E.A., Sanchez-Jimenez, V., Diaz, R., Benedito, J., Garcia-
Perez, J. V., 2021b. Assessment of avocado textural changes during ripening by 
using contactless air-coupled ultrasound. J Food Eng 289. 
https://doi.org/10.1016/j.jfoodeng.2020.110266 

Fariñas, M.D., Sanchez-Jimenez, V., Benedito, J., Garcia-Perez, J. V., 2023. Monitoring 
physicochemical modifications in beef steaks during dry salting using contact and 
non-contact ultrasonic techniques. Meat Sci 204, 109275. 
https://doi.org/10.1016/j.meatsci.2023.109275 

Fernández Pierna, J.A., Vincke, D., Baeten, V., Grelet, C., Dehareng, F., Dardenne, P., 
2016. Use of a multivariate moving window PCA for the untargeted detection of 
contaminants in agro-food products, as exemplified by the detection of melamine 
levels in milk using vibrational spectroscopy. Chemometrics and Intelligent 
Laboratory Systems 152, 157–162. https://doi.org/10.1016/j.chemolab.2015.10.016 

Fink, F., Stawski, T.M., Emmerling, F., Falkenhagen, J., 2025. A novel machine-learning 
approach to unlock technical lignin classification by NIR spectroscopy - bench to 
handheld. Chemometrics and Intelligent Laboratory Systems 264. 
https://doi.org/10.1016/j.chemolab.2025.105467 

Fu, L., Xie, H.L., Xu, X.R., Yang, H.J., Nie, X. Du, 2014. Combining random forest with 
multi-amino acid features to identify protein palmitoylation sites. Chemometrics and 
Intelligent Laboratory Systems 135, 208–212. 
https://doi.org/10.1016/j.chemolab.2014.04.009 

Galdón-Navarro, B., Prats-Montalbán, J.M., Cubero, S., Blasco, J., Ferrer, A., 2018. 
Comparison of latent variable-based and artificial intelligence methods for impurity 
detection in PET recycling from NIR hyperspectral images. J Chemom 32. 
https://doi.org/10.1002/cem.2980 

https://doi.org/10.1201/b14117


 
 

112 
 

Gan, W.S., 2020. Signal processing and image processing for acoustical imaging, Signal 
Processing and Image Processing for Acoustical Imaging. Springer Singapore. 
https://doi.org/10.1007/978-981-10-5550-8 

Garcia-Perez, J. V., de Prados, M., Martinez, G., Gomez Alvarez-Arenas, T.E., Benedito, 
J., 2019. Ultrasonic online monitoring of the ham salting process. Methods for signal 
analysis: Time of flight calculation. J Food Eng 263, 87–95. 
https://doi.org/10.1016/j.jfoodeng.2019.05.032 

Garrido-Novell, C., Garrido-Varo, A., Pérez-Marín, D., Guerrero, J.E., 2018. Using 
spectral and textural data extracted from hyperspectral near infrared spectroscopy 
imaging to discriminate between processed pork, poultry and fish proteins. 
Chemometrics and Intelligent Laboratory Systems 172, 90–99. 
https://doi.org/10.1016/j.chemolab.2017.11.011 

Gholizadeh, M., Jamei, M., Ahmadianfar, I., Pourrajab, R., 2020. Prediction of nanofluids 
viscosity using random forest (RF) approach. Chemometrics and Intelligent 
Laboratory Systems 201. https://doi.org/10.1016/j.chemolab.2020.104010 

Godoy, J.L., Vega, J.R., Marchetti, J.L., 2014. Relationships between PCA and PLS-
regression. Chemometrics and Intelligent Laboratory Systems 130, 182–191. 
https://doi.org/10.1016/j.chemolab.2013.11.008 

Guisset, S., Martin, M., Govaerts, B., 2019. Comparison of PARAFASCA, AComDim, 
and AMOPLS approaches in the multivariate GLM modelling of multi-factorial 
designs. Chemometrics and Intelligent Laboratory Systems 184, 44–63. 
https://doi.org/10.1016/j.chemolab.2018.11.006 

He, T., Lai, W., Li, M., Feng, Y., Liu, Y., Yu, T., Tang, H., Zhang, T., Li, H., 2021. The 
detonation heat prediction of nitrogen-containing compounds based on quantitative 
structure-activity relationship (QSAR) combined with random forest (RF). 
Chemometrics and Intelligent Laboratory Systems 213. 
https://doi.org/10.1016/j.chemolab.2021.104249 

Hu, M.H., Zhao, Y., Zhai, G.T., 2018. Active learning algorithm can establish classifier 
of blueberry damage with very small training dataset using hyperspectral 
transmittance data. Chemometrics and Intelligent Laboratory Systems 172, 52–57. 
https://doi.org/10.1016/j.chemolab.2017.11.012 

Jiang, H., Yoon, S.C., Zhuang, H., Wang, W., Lawrence, K.C., Yang, Y., 2018. 
Tenderness classification of fresh broiler breast fillets using visible and near-infrared 
hyperspectral imaging. Meat Sci 139, 82–90. 
https://doi.org/10.1016/j.meatsci.2018.01.013 

Jiménez-Carvelo, A.M., González-Casado, A., Bagur-González, M.G., Cuadros-
Rodríguez, L., 2019. Alternative data mining/machine learning methods for the 
analytical evaluation of food quality and authenticity – A review. Food Research 
International. https://doi.org/10.1016/j.foodres.2019.03.063 



 
 

113 
 

Jin, C., Bouzembrak, Y., Zhou, J., Liang, Q., van den Bulk, L.M., Gavai, A., Liu, N., van 
den Heuvel, L.J., Hoenderdaal, W., Marvin, H.J.P., 2020. Big Data in food safety- 
A review. Curr Opin Food Sci. https://doi.org/10.1016/j.cofs.2020.11.006 

Kahrıman, F., Liland, K.H., 2021. SelectWave: A graphical user interface for wavelength 
selection and spectral data analysis. Chemometrics and Intelligent Laboratory 
Systems 212. https://doi.org/10.1016/j.chemolab.2021.104275 

Karatzoglou, A., Smola, A., & Hornik, K. 2024. kernlab-An S4 Package for Kernel 
Methods in R. Journal of Statistical Software, 11 (9), 1-20. DOI: 
https://doi.org/10.18637/jss.v011.i09. 

Kruse, O.M.O., Prats-Montalbán, J.M., Indahl, U.G., Kvaal, K., Ferrer, A., Futsaether, 
C.M., 2014. Pixel classification methods for identifying and quantifying leaf surface 
injury from digital images. Comput Electron Agric 108, 155–165. 
https://doi.org/10.1016/j.compag.2014.07.010 

Kuhn, M. 2008) Building Predictive Models in R Using the caret Package. Journal of 
Statistical Software, 28(5), 1–26. DOI: https://doi.org/10.18637/jss.v028.i05 

Kumar, M., Dahuja, A., Sachdev, A., Kaur, C., Varghese, E., Saha, S., Sairam, K.V.S.S., 
2019. Valorisation of black carrot pomace: microwave assisted extraction of 
bioactive phytoceuticals and antioxidant activity using Box–Behnken design. J Food 
Sci Technol 56, 995–1007. https://doi.org/10.1007/s13197-018-03566-9 

Lemaigre, S., Adam, G., Goux, X., Noo, A., De Vos, B., Gerin, P.A., Delfosse, P., 2016. 
Transfer of a static PCA-MSPC model from a steady-state anaerobic reactor to an 
independent anaerobic reactor exposed to organic overload. Chemometrics and 
Intelligent Laboratory Systems 159, 20–30. 
https://doi.org/10.1016/j.chemolab.2016.09.010 

Li, Y., Bian, X., Sheng, J., Yang, S., 2025. Macroscopic properties and air pores of 
tailings concrete under dry-wet cycles of chloride attack based on principal 
component analysis (PCA). Constr Build Mater 489. 
https://doi.org/10.1016/j.conbuildmat.2025.142233 

Liaw, A., & Wiener, M. 2002. Classification and Regression by randomForest. R News 
2(3), 18-22. https://CRAN.R-project.org/doc/Rnews/ 

Liberda, D., Kosowska, K., Koziol, P., Wrobel, T.P., 2021. Spatial sampling effect on 
data structure and random forest classification of tissue types in High Definition and 
Standard Definition FT-IR imaging. Chemometrics and Intelligent Laboratory 
Systems 217. https://doi.org/10.1016/j.chemolab.2021.104407 

Lim, H., Lee, J., Lee, S., Cho, H., Lee, H., Jeon, D., 2022. Low-density foreign body 
detection in food products using single-shot grid-based dark-field X-ray imaging. J 
Food Eng 335. https://doi.org/10.1016/j.jfoodeng.2022.111189 

López, F., Prats, J.M., Ferrer, A., Valiente, J.M., 2006. Defect detection in random colour 
textures using the MIA T2 defect maps. Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics) 4142 LNCS, 752–763. https://doi.org/10.1007/11867661_68 

https://cran.r-project.org/doc/Rnews/


 
 

114 
 

Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., Makowski, D. 2021. An R 
Package for Assessment, Comparison and Testing of Statistical Models. Journal of 
Open Source Software, 6(60), 3139. DOI: https://doi.org/10.21105/joss.03139 

Macgregor, J.F., Kourtl, T., 1995. STATISTICAL PROCESS CONTROL OF 
MULTIVARIATE PROCESSES, Control Fag. Practice. 

Malaslı, M.Z., Akkoyunlu, M.C., Pekel, E., Taşova, M., Dursun, S.K., Akkoyunlu, M.T., 
2025. Prediction of drying kinetics and energy consumption values of purple carrots 
dried in a temperature-controlled microwave dryer by decision tree, random forest 
and ada boost approaches. Chemometrics and Intelligent Laboratory Systems 260. 
https://doi.org/10.1016/j.chemolab.2025.105352 

McFarlane, N.J.B., Speller, R.D., Bull, C.R., Tillett, R.D., 2003. Detection of bone 
fragments in chicken meat using X-ray backscatter. Biosyst Eng 85, 185–199. 
https://doi.org/10.1016/S1537-5110(03)00036-9 

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. 2024. e1071: Misc 
Functions of the Department of Statistics, Probability Theory Group (Formerly: 
E1071), TU Wien_. R package version 1.7-16, https://CRAN.R-
project.org/package=e1071. 

Mohd Khairi, M.T., Ibrahim, S., Md Yunus, M.A., Faramarzi, M., 2018. Noninvasive 
techniques for detection of foreign bodies in food: A review. J Food Process Eng. 
https://doi.org/10.1111/jfpe.12808 

Mohd Khairi, M.T., Ibrahim, S., Md Yunus, M.A., Faramarzi, M., 2015. Contact and non-
contact ultrasonic measurement in the food industry: A review. Meas Sci Technol 
27. https://doi.org/10.1088/0957-0233/27/1/012001 

Ni, D., Xiao, Z., Lim, M.K., 2020. A systematic review of the research trends of machine 
learning in supply chain management. International Journal of Machine Learning 
and Cybernetics 11, 1463–1482. https://doi.org/10.1007/s13042-019-01050-0 

Nibouche, O., Asharindavida, F., Wang, H., Vincent, J., Liu, J., van Ruth, S., Maguire, 
P., Rahman, E., 2024. A new sub-class linear discriminant for miniature 
spectrometer based food analysis. Chemometrics and Intelligent Laboratory Systems 
250. https://doi.org/10.1016/j.chemolab.2024.105136 

Nielsen, M.S., Lauridsen, T., Christensen, L.B., Feidenhans’l, R., 2013. X-ray dark-field 
imaging for detection of foreign bodies in food. Food Control 30, 531–535. 
https://doi.org/10.1016/j.foodcont.2012.08.007 

Otchere, D.A., 2023. Fundamental error in tree-based machine learning model selection 
for reservoir characterisation. Energy Geoscience. 
https://doi.org/10.1016/j.engeos.2023.100229 

Ozturk, S., Bowler, A., Rady, A., Watson, N.J., 2023. Near-infrared spectroscopy and 
machine learning for classification of food powders during a continuous process. J 
Food Eng 341. https://doi.org/10.1016/j.jfoodeng.2022.111339 

https://doi.org/10.21105/joss.03139
https://cran.r-project.org/package=e1071
https://cran.r-project.org/package=e1071


 
 

115 
 

Paris, A., Duchesne, C., Poulin, É., 2024. Adjusting plant operating conditions to widen 
multivariate specification regions for incoming raw materials–An optimization 
framework. Chemometrics and Intelligent Laboratory Systems 244. 
https://doi.org/10.1016/j.chemolab.2023.104991 

Pérez-Santaescolástica, C., Fraeye, I., Barba, F.J., Gómez, B., Tomasevic, I., Romero, A., 
Moreno, A., Toldrá, F., Lorenzo, J.M., 2019. Application of non-invasive 
technologies in dry-cured ham: An overview. Trends Food Sci Technol. 
https://doi.org/10.1016/j.tifs.2019.02.011 

Prats-Montalbán, J.M., de Juan, A., Ferrer, A., 2011. Multivariate image analysis: A 
review with applications. Chemometrics and Intelligent Laboratory Systems. 
https://doi.org/10.1016/j.chemolab.2011.03.002 

Prats-Montalbán, J.M., Ferrer, A., Bro, R., Hancewicz, T., 2009. Prediction of skin 
quality properties by different Multivariate Image Analysis methodologies. 
Chemometrics and Intelligent Laboratory Systems 96, 6–13. 
https://doi.org/10.1016/j.chemolab.2008.10.012 

Prats-Montalbán, J.M., Jerez-Rozo, J.I., Romañach, R.J., Ferrer, A., 2012. MIA and NIR 
Chemical Imaging for pharmaceutical product characterization. Chemometrics and 
Intelligent Laboratory Systems 117, 240–249. 
https://doi.org/10.1016/j.chemolab.2012.04.002 

Preys, S., Vigneau, E., Mazerolles, G., Cheynier, V., Bertrand, D., 2007. Multivariate 
prototype approach for authentication of food products. Chemometrics and 
Intelligent Laboratory Systems 87, 200–207. 
https://doi.org/10.1016/j.chemolab.2007.01.003 

Ramtanon, I., Lacoue-Nègre, M., Berlioz-Barbier, A., Le Masle, A., Renault, J.H., 2025. 
A selective genetic algorithm - PLS-DA approach based on untargeted LC-HRMS: 
Application to complex biomass samples. Chemometrics and Intelligent Laboratory 
Systems 261. https://doi.org/10.1016/j.chemolab.2025.105381 

Reis, M.S., 2015. An integrated multiscale and multivariate image analysis framework 
for process monitoring of colour random textures: MSMIA. Chemometrics and 
Intelligent Laboratory Systems 142, 36–48. 
https://doi.org/10.1016/j.chemolab.2015.01.008 

Ruiz de Miras, J., Gacto, M.J., Blanc, M.R., Arroyo, G., López, L., Torres, J.C., Martín, 
D., 2024. Machine learning regression algorithms for generating chemical element 
maps from X-ray fluorescence data of paintings. Chemometrics and Intelligent 
Laboratory Systems 248. https://doi.org/10.1016/j.chemolab.2024.105116 

Sánchez-Jiménez, V., Collazos-Escobar, G.A., González-Mohino, A., Alvarez-Arenas, 
T.E., Benedito, J., García-Pérez, J. V., 2023. Non-invasive monitoring of potato 
drying by means of air-coupled ultrasound. Food Control 109653. 
https://doi.org/10.1016/j.foodcont.2023.109653 



 
 

116 
 

Scatigno, C., Festa, G., 2022. FTIR coupled with machine learning to unveil 
spectroscopic benchmarks in the Italian EVOO. Int J Food Sci Technol 57, 4156–
4162. https://doi.org/10.1111/ijfs.15735 

Sinisterra-Solís, N., Sanjuán, N., Ribal, J., Estruch, V., Clemente, G., Rozakis, S., 2024. 
Developing a composite indicator to assess agricultural sustainability: Influence of 
some critical choices. Ecol Indic 161. https://doi.org/10.1016/j.ecolind.2024.111934 

Siqueira, L.F.S., Araújo Júnior, R.F., de Araújo, A.A., Morais, C.L.M., Lima, K.M.G., 
2017. LDA vs. QDA for FT-MIR prostate cancer tissue classification. 
Chemometrics and Intelligent Laboratory Systems 162, 123–129. 
https://doi.org/10.1016/j.chemolab.2017.01.021 

Suen, Y., Xiao, S., Hao, S., Zhao, X., Xiong, Y., Liu, S., 2016. Time-frequency 
representation measurement based on temporal Fourier transformation. Opt 
Commun 376, 86–91. https://doi.org/10.1016/j.optcom.2016.05.017 

Sun, H., Hu, X., 2017. Attribute selection for decision tree learning with class constraint. 
Chemometrics and Intelligent Laboratory Systems 163, 16–23. 
https://doi.org/10.1016/j.chemolab.2017.02.004 

Thévenot, E.A., Roux, A., Xu, Y., Ezan, E., Junot, C., 2015. Analysis of the Human Adult 
Urinary Metabolome Variations with Age, Body Mass Index, and Gender by 
Implementing a Comprehensive Workflow for Univariate and OPLS Statistical 
Analyses. J Proteome Res 14, 3322–3335. 
https://doi.org/10.1021/acs.jproteome.5b00354 

van Herwerden, D., O’Brien, J.W., Choi, P.M., Thomas, K. V., Schoenmakers, P.J., 
Samanipour, S., 2022. Naive Bayes classification model for isotopologue detection 
in LC-HRMS data. Chemometrics and Intelligent Laboratory Systems 223. 
https://doi.org/10.1016/j.chemolab.2022.104515 

Velásquez, S., Franco, A.P., Peña, N., Bohórquez, J.C., Gutierrez, N., 2021a. Effect of 
coffee cherry maturity on the performance of the drying process of the bean: 
Sorption isotherms and dielectric spectroscopy. Food Control 123. 
https://doi.org/10.1016/j.foodcont.2020.107692 

Velásquez, S., Franco, A.P., Peña, N., Bohórquez, J.C., Gutiérrez, N., 2021b. 
Classification of the maturity stage of coffee cherries using comparative feature and 
machine learning. Coffee Sci 16, 1. https://doi.org/10.25186/.v16i.1710 

Velásquez, S., Peña, N., Bohórquez, J.C., Gutierrez, N., Sacks, G.L., 2019. Volatile and 
sensory characterization of roast coffees – Effects of cherry maturity. Food Chem 
274, 137–145. https://doi.org/10.1016/j.foodchem.2018.08.127 

Verdú, S., García, I., Roda, C., Barat, J.M., Grau, R., Ferrer, A., Prats-Montalbán, J.M., 
2025. Multivariate image analysis for assessment of textural attributes in 
transglutaminase-reconstituted meat. Chemometrics and Intelligent Laboratory 
Systems 256. https://doi.org/10.1016/j.chemolab.2024.105280 

Villalba, P., Sanchis, J., Ferrer, A., 2019. A graphical user interface for PCA-based 
MSPC: A benchmark software for multivariate statistical process control in 



 
 

117 
 

MATLAB. Chemometrics and Intelligent Laboratory Systems 185, 135–152. 
https://doi.org/10.1016/j.chemolab.2018.12.004 

Vitale, R., Prats-Montalbán, J.M., López-García, F., Blasco, J., Ferrer, A., 2016. 
Segmentation techniques in image analysis: A comparative study. J Chemom 30, 
749–758. https://doi.org/10.1002/cem.2854 

Vranckx, I., Raymaekers, J., De Ketelaere, B., Rousseeuw, P.J., Hubert, M., 2021. Real-
time discriminant analysis in the presence of label and measurement noise. 
Chemometrics and Intelligent Laboratory Systems 208. 
https://doi.org/10.1016/j.chemolab.2020.104197 

Wang, F., Ma, S., Yan, G., 2023. A PLS-based random forest for NOx emission 
measurement of power plant. Chemometrics and Intelligent Laboratory Systems 
240. https://doi.org/10.1016/j.chemolab.2023.104926 

Wang, T., Jiao, L., Yan, C., He, Y., Li, M., Zhang, T., Li, H., 2019. Simultaneous 
quantitative analysis of four metal elements in oily sludge by laser induced 
breakdown spectroscopy coupled with wavelet transform-random forest (WT-RF). 
Chemometrics and Intelligent Laboratory Systems 194. 
https://doi.org/10.1016/j.chemolab.2019.103854 

Xu, X., Guan, L., Wang, Z., Yao, R., Guan, X., 2025. A double-layer forecasting model 
for PV power forecasting based on GRU-Informer-SVR and Blending ensemble 
learning framework. Appl Soft Comput 172. 
https://doi.org/10.1016/j.asoc.2025.112768 

Yaqoob, M., Sharma, S., Aggarwal, P., 2021. Imaging techniques in Agro-industry and 
their applications, a review. Journal of Food Measurement and Characterization. 
https://doi.org/10.1007/s11694-021-00809-w 

Yeap, D., McCartney, M.M., Rajapakse, M.Y., Fung, A.G., Kenyon, N.J., Davis, C.E., 
2020. Peak detection and random forests classification software for gas 
chromatography/differential mobility spectrometry (GC/DMS) data. Chemometrics 
and Intelligent Laboratory Systems 203. 
https://doi.org/10.1016/j.chemolab.2020.104085 

Yolmeh, M., Jafari, S.M., 2017. Applications of Response Surface Methodology in the 
Food Industry Processes. Food Bioproc Tech. https://doi.org/10.1007/s11947-016-
1855-2 

Yoon, S. C., Lawrence, K. C., Smith, D. P., Park, B., & Windham, W. R. 2007. Bone 
Fragment Detection in Chicken Breast Fillets Using Transmittance Image 
Enhancement. Trans ASABE 51, 331–339. DOI: 
https://doi.org/10.13031/2013.24209 

Zhang, Y., 2014. An improved QSPR method based on support vector machine applying 
rational sample data selection and genetic algorithm-controlled training parameters 
optimization. Chemometrics and Intelligent Laboratory Systems 134, 34–46. 
https://doi.org/10.1016/j.chemolab.2014.03.004 

https://doi.org/10.13031/2013.24209


 
 

118 
 

Zhao, B., Yang, P., Basir, O.A., Mittal, G.S., 2006. Ultrasound based glass fragments 
detection in glass containers filled with beverages using neural networks and short 
time Fourier transform. Food Research International 39, 686–695. 
https://doi.org/10.1016/j.foodres.2006.01.008 

Zhu, J., Deng, J., Zhao, X., Xu, L., Jiang, H., 2024. Accurate identification of cadmium 
pollution in peanut oil using microwave technology combined with SVM-RFE. Sens 
Actuators A Phys 368. https://doi.org/10.1016/j.sna.2024.115085  

https://doi.org/10.1016/j.sna.2024.115085


 
 

119 
 

9. Supplementary material 

The results of the unsupervised PCA-MSPC detection of BF, obtained through the feature 
extraction approach based on first-order statistics applied to ultrasound energy-magnitude-
distribution parameters (Section 2.7.1.3), are summarized in Tables 1S to 3S. In addition, the 
results regarding the improvement of BF detection using latent-variable-based machine 
learning techniques (Section 2.7.2) have been systematically compiled into 120 Excel files, 
provided as supplementary material. These files include the complete datasets, detailed 
outcomes, and computational analyses that support and validate the findings of this study. 
Specifically, they summarize the results of multivariate statistical modeling using machine 
learning techniques within the latent variables framework (SVM, DTe, RF, NB, LDA, QDA, 
and GLM), as well as those obtained from the Random Forest-Variable Selection strategy 
(RF-RV-LV-ML) applied to SVM, DTe, RF, NB, LDA, QDA, and GLM. Furthermore, the 
statistical results of all hyperparameters configurations tested for LV-SVM are separately 
represented considering TDA (Fig. 1S), FDA (Fig. 2S), TFDA (Fig. 3S), TFDABH (Fig. 4S) 
and TFDABS (Fig. 5S) data approaches.   
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Table 1S. Optimized Principal Component models (PCA) and statistical performance of the 
Residual Sum Squares (RSS) and Hotelling’s T-squared (T2) multivariate control statistics 
for detection of bone fragments using feature-extraction time-domain approach (feTDA). 

feTDA-RSS 
LA (%) Control limit (%) OPCs Acc (%) Se Sp 

0 90 29 85.67 ± 1.48 0.86 ± 0.03 0.86 ± 0.02 
0 95 26 87.25 ± 1.05 0.86 ± 0.02 0.89 ± 0.02 
0 97.5 26 88.13 ± 1.11 0.84 ± 0.02 0.92 ± 0.02 
0 99 26 87.96 ± 1.41 0.81 ± 0.03 0.95 ± 0.02 
50 90 25 89.10 ± 1.29 0.85 ± 0.02 0.93 ± 0.02 
50 95 26 88.36 ± 1.26 0.81 ± 0.03 0.96 ± 0.02 
50 97.5 26 87.09 ± 1.59 0.77 ± 0.03 0.97 ± 0.02 
50 99 26 84.52 ± 2.00 0.71 ± 0.04 0.98 ± 0.02 
75 90 25 88.98 ± 1.18 0.82 ± 0.02 0.96 ± 0.02 
75 95 26 87.10 ± 1.60 0.77 ± 0.03 0.97 ± 0.02 
75 97.5 26 85.19 ± 1.71 0.72 ± 0.04 0.98 ± 0.02 
75 99 25 82.30 ± 2.10 0.66 ± 0.05 0.99 ± 0.01 

100 90 26 87.64 ± 1.52 0.79 ± 0.03 0.96 ± 0.02 
100 95 26 85.99 ± 1.81 0.75 ± 0.04 0.97 ± 0.01 
100 97.5 26 83.67 ± 2.26 0.69 ± 0.05 0.98 ± 0.01 
100 99 25 80.86 ± 1.68 0.63 ± 0.04 0.99 ± 0.01 

feTDA-T2 
LA (%) Control limit (%) OPCs Acc (%) Se Sp 

0 90 31 86.22 ± 1.00 0.86 ± 0.01 0.86 ± 0.02 
0 95 37 88.56 ± 0.70 0.89 ± 0.01 0.88 ± 0.02 
0 97.5 40 89.80 ± 0.76 0.89 ± 0.01 0.90 ± 0.01 
0 99 40 90.20 ± 0.90 0.88 ± 0.01 0.92 ± 0.02 
50 90 40 89.68 ± 1.04 0.85 ± 0.02 0.95 ± 0.02 
50 95 40 89.33 ± 1.10 0.84 ± 0.02 0.95 ± 0.02 
50 97.5 40 88.98 ± 1.10 0.83 ± 0.02 0.95 ± 0.02 
50 99 40 88.49 ± 1.00 0.81 ± 0.02 0.96 ± 0.02 
75 90 40 88.59 ± 0.83 0.82 ± 0.02 0.96 ± 0.02 
75 95 40 88.20 ± 0.86 0.81 ± 0.02 0.96 ± 0.02 
75 97.5 40 87.59 ± 0.88 0.79 ± 0.02 0.96 ± 0.02 
75 99 40 86.94 ± 1.07 0.78 ± 0.03 0.96 ± 0.02 

100 90 40 87.43 ± 0.93 0.78 ± 0.02 0.96 ± 0.02 
100 95 40 86.77 ± 1.05 0.77 ± 0.02 0.97 ± 0.02 
100 97.5 40 85.90 ± 1.18 0.75 ± 0.03 0.97 ± 0.02 
100 99 40 85.02 ± 1.20 0.73 ± 0.03 0.97 ± 0.02 

feTDA (feature-extraction time-domain approach), RSS (Residual Sum Squares), T2 (Hotelling’s T-squared), 
limit augmentation (LA), OPCs (optimal number of principal components), Acc (overall accuracy), Se 
(sensibility) and Sp (specificity). Results are expressed as mean ± standard error.   
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Table 2S. Optimized Principal Component models (PCA) and statistical performance of the 
Residual Sum Squares (RSS) and Hotelling’s T-squared (T2) multivariate control statistics 
for detection of bone fragments using feature-extraction frequency-domain approach 
(feFDA). 

feFDA-RSS 
LA (%) Control limit (%) OPCs Acc (%) Se Sp 

0 90 21 85.67 ± 1.18 0.86 ± 0.03 0.86 ± 0.02 
0 95 27 88.94 ± 1.36 0.88 ± 0.03 0.89 ± 0.02 
0 97.5 27 88.87 ± 1.66 0.85 ± 0.04 0.93 ± 0.02 
0 99 28 87.69 ± 1.89 0.81 ± 0.04 0.95 ± 0.02 
50 90 30 88.41 ± 1.99 0.85 ± 0.04 0.91 ± 0.02 
50 95 27 87.69 ± 1.56 0.80 ± 0.03 0.95 ± 0.02 
50 97.5 27 85.85 ± 2.01 0.76 ± 0.05 0.96 ± 0.02 
50 99 27 83.25 ± 2.61 0.69 ± 0.06 0.97 ± 0.02 
75 90 31 87.96 ± 2.22 0.82 ± 0.05 0.94 ± 0.02 
75 95 31 85.68 ± 2.99 0.77 ± 0.06 0.95 ± 0.02 
75 97.5 27 83.63 ± 2.16 0.70 ± 0.05 0.97 ± 0.02 
75 99 28 81.83 ± 2.49 0.66 ± 0.06 0.98 ± 0.02 

100 90 31 86.67 ± 2.40 0.79 ± 0.05 0.94 ± 0.02 
100 95 31 83.83 ± 3.27 0.72 ± 0.07 0.95 ± 0.02 
100 97.5 27 82.54 ± 2.19 0.67 ± 0.05 0.98 ± 0.01 
100 99 28 80.07 ± 2.54 0.62 ± 0.05 0.98 ± 0.01 

feFDA-T2 
LA (%) Control limit (%) OPCs Acc (%) Se Sp 

0 90 32 85.86 ± 1.03 0.86 ± 0.02 0.86 ± 0.02 
0 95 35 90.20 ± 0.87 0.91 ± 0.02 0.89 ± 0.02 
0 97.5 35 91.20 ± 0.91 0.90 ± 0.02 0.92 ± 0.02 
0 99 35 91.60 ± 0.88 0.90 ± 0.02 0.93 ± 0.02 
50 90 35 89.64 ± 1.03 0.83 ± 0.03 0.96 ± 0.02 
50 95 35 88.56 ± 1.29 0.81 ± 0.03 0.96 ± 0.02 
50 97.5 35 87.35 ± 1.59 0.78 ± 0.04 0.97 ± 0.02 
50 99 35 86.70 ± 1.57 0.77 ± 0.04 0.97 ± 0.02 
75 90 35 86.28 ± 1.34 0.76 ± 0.03 0.97 ± 0.02 
75 95 35 84.94 ± 1.47 0.73 ± 0.03 0.97 ± 0.02 
75 97.5 35 83.59 ± 1.60 0.70 ± 0.04 0.97 ± 0.02 
75 99 35 82.80 ± 1.54 0.68 ± 0.04 0.97 ± 0.02 

100 90 35 83.06 ± 1.68 0.69 ± 0.04 0.98 ± 0.02 
100 95 35 81.84 ± 1.77 0.66 ± 0.04 0.98 ± 0.02 
100 97.5 35 81.05 ± 1.65 0.64 ± 0.04 0.98 ± 0.02 
100 99 35 80.64 ± 1.44 0.63 ± 0.04 0.98 ± 0.02 

feFDA (feature-extraction frequency-domain approach), RSS (Residual Sum Squares), T2 (Hotelling’s T-
squared), limit augmentation (LA), OPCs (optimal number of principal components), Acc (overall accuracy), Se 
(sensibility) and Sp (specificity). Results are expressed as mean ± standard error.   
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Table 3S. Optimized Principal Component models (PCA) and statistical performance of the 
Residual Sum Squares (RSS) and Hotelling’s T-squared (T2) multivariate control statistics 
for detection of bone fragments using feature-extraction time-frequency domain approach 
(feTFDA). 

feTFDA-RSS 
LA (%) Control limit (%) OPCs Acc (%) Se Sp 

0 90 14 86.12 ± 1.09 0.86 ± 0.01 0.86 ± 0.02 
0 95 21 88.83 ± 1.12 0.89 ± 0.02 0.89 ± 0.02 
0 97.5 30 90.43 ± 1.55 0.90 ± 0.04 0.90 ± 0.02 
0 99 33 91.17 ± 1.61 0.90 ± 0.04 0.92 ± 0.02 
50 90 30 90.99 ± 1.19 0.91 ± 0.02 0.91 ± 0.02 
50 95 34 92.05 ± 1.10 0.91 ± 0.02 0.93 ± 0.02 
50 97.5 36 92.83 ± 1.15 0.93 ± 0.03 0.93 ± 0.02 
50 99 37 92.61 ± 1.25 0.92 ± 0.03 0.93 ± 0.02 
75 90 35 92.85 ± 1.05 0.93 ± 0.02 0.93 ± 0.02 
75 95 37 93.04 ± 1.00 0.94 ± 0.02 0.93 ± 0.02 
75 97.5 38 93.04 ± 1.02 0.93 ± 0.02 0.93 ± 0.02 
75 99 40 92.78 ± 1.18 0.93 ± 0.02 0.93 ± 0.02 

100 90 36 92.39 ± 1.15 0.92 ± 0.02 0.93 ± 0.02 
100 95 38 92.74 ± 0.89 0.93 ± 0.02 0.93 ± 0.01 
100 97.5 41 92.85 ± 1.07 0.93 ± 0.02 0.93 ± 0.02 
100 99 43 92.78 ± 1.08 0.92 ± 0.02 0.93 ± 0.02 

feTFDA-T2 
LA (%) Control limit (%) OPCs Acc (%) Se Sp 

0 90 37 86.14 ± 0.87 0.86 ± 0.02 0.86 ± 0.02 
0 95 41 88.23 ± 1.00 0.88 ± 0.01 0.89 ± 0.02 
0 97.5 44 90.28 ± 0.99 0.90 ± 0.02 0.90 ± 0.01 
0 99 45 91.01 ± 0.87 0.90 ± 0.02 0.92 ± 0.02 
50 90 50 92.37 ± 1.04 0.92 ± 0.02 0.93 ± 0.02 
50 95 51 93.12 ± 0.89 0.94 ± 0.01 0.93 ± 0.02 
50 97.5 51 92.99 ± 0.90 0.93 ± 0.01 0.93 ± 0.02 
50 99 51 92.85 ± 0.99 0.93 ± 0.02 0.93 ± 0.02 
75 90 52 92.79 ± 0.85 0.93 ± 0.02 0.93 ± 0.02 
75 95 52 92.53 ± 0.93 0.92 ± 0.02 0.93 ± 0.02 
75 97.5 53 93.30 ± 0.86 0.94 ± 0.02 0.93 ± 0.02 
75 99 53 93.22 ± 0.91 0.93 ± 0.02 0.93 ± 0.02 

100 90 54 93.44 ± 0.98 0.93 ± 0.02 0.93 ± 0.02 
100 95 54 93.22 ± 0.88 0.93 ± 0.02 0.94 ± 0.02 
100 97.5 54 93.08 ± 0.93 0.92 ± 0.02 0.94 ± 0.02 
100 99 55 93.63 ± 0.94 0.94 ± 0.01 0.93 ± 0.02 

feTFDA (feature-extraction time-frequency domain approach), RSS (Residual Sum Squares), T2 (Hotelling’s 
T-squared), limit augmentation (LA), OPCs (optimal number of principal components), Acc (overall accuracy), 
Se (sensibility) and Sp (specificity). Results are expressed as mean ± standard error.   
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Fig. 1S. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-domain approach (TDA), shown as a function of the SVM 
hyperparameters and the number of latent variables (NLVs) tested. Results of overall 
accuracy (Acc) are reported separately for the training (75%) and the validation (25%) 
datasets. 
 
 
 
 

Fig. 2S. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the frequency-domain approach (FDA), shown as a function of the SVM 
hyperparameters and the number of latent variables (NLVs) tested. Results of overall 
accuracy (Acc) are reported separately for the training (75%) and the validation (25%) 
datasets.  
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Fig. 3S. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-frequency-domain approach (TFDA), shown as a function of the 
SVM hyperparameters and the number of latent variables (NLVs) tested. Results of overall 
accuracy (Acc) are reported separately for the training (75%) and the validation (25%) 
datasets. 
 
 
 
 

Fig. 4S. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-frequency-domain approach-block-scale hard (TFDABH), shown 
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested. 
Results of overall accuracy (Acc) are reported separately for the training (75%) and the 
validation (25%) datasets.  
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Fig. 5S. Statistical classification performance of the Latent Variable-Support Vector Machine 
(LV-SVM) using the time-frequency-domain approach-block-scale soft (TFDABS), shown 
as a function of the SVM hyperparameters and the number of latent variables (NLVs) tested. 
Results of overall accuracy (Acc) are reported separately for the training (75%) and the 
validation (25%) datasets.  
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10. Annexed 

Sustainable development goals 

This master’s thesis, entitled: Non-invasive detection of bone fragments in poultry meat by 
the integration of ultrasound imaging, multivariate image analysis and machine learning, 
aligns closely with the triple impact goals of the United Nations Sustainable Development 
Goals (SDGs). Firstly, by ensuring the safety and quality of poultry and food products, this 
research supports SDG 3: Good Health and Well-being, by reducing the risk of injuries 
caused by bone fragments. In addition, this research supports SDG 2: Zero Hunger, as 
improving food safety, minimizing waste, and increasing the reliability of animal protein 
production directly contribute to global food security and the availability of safe, nutritious 
food for all. 
 
Secondly, the adoption of non-invasive, real-time detection methods enhances operational 
efficiency and reduces waste, contributing to SDG 12: Responsible Consumption and 
Production. Lastly, the implementation of advanced technologies such as machine learning 
and ultrasound based-imaging promotes innovation and sustainable industrial practices, 
aligning with SDG 9: Industry, Innovation, and Infrastructure. The integration of these 
cutting-edge technologies not only addresses food safety concerns but also fosters sustainable 
practices within the food industry, thereby creating a comprehensive impact on health, 
production efficiency, and technological advancement. 
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